HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Antifungal mechanisms supporting boric acid therapy of Candida vaginitis.

AbstractBACKGROUND:
Boric acid is a commonly cited treatment for recurrent and resistant yeast vaginitis, but data about the extent and mechanism of its antifungal activity are lacking.
OBJECTIVES:
The aim of this study was to use in vitro methods to understand the spectrum and mechanism of boric acid as a potential treatment for vaginal infection.
METHODS:
Yeast and bacterial isolates were tested by agar dilution to determine the intrinsic antimicrobial activity of boric acid. Established microbial physiology methods illuminated the mechanism of the action of boric acid against Candida albicans.
RESULTS:
C. albicans strains (including fluconazole-resistant strains) were inhibited at concentrations attainable intravaginally; as were bacteria. Broth dilution MICs were between 1563 and 6250 mg/L and boric acid proved fungistatic (also reflected by a decrease in CO(2) generation); prolonged culture at 50,000 mg/L was fungicidal. Several organic acids in yeast nitrogen broth yielded a lower pH than equimolar boric acid and sodium borate but were less inhibitory. Cold or anaerobic incubation protected yeast at high boric acid concentrations. Cells maintained integrity for 6 h in boric acid at 37 degrees C, but after 24 h modest intrusion of propidium iodide occurred; loss of plate count viability preceded uptake of vital stain. Growth at sub-MIC concentrations of boric acid decreased cellular ergosterol. The drug efflux pump CDR1 did not protect Candida as CDR1 expression was abrogated by boric acid. Boric acid interfered with the development of biofilm and hyphal transformation.
CONCLUSIONS:
Boric acid is fungistatic to fungicidal depending on concentration and temperature. Inhibition of oxidative metabolism appears to be a key antifungal mechanism, but inhibition of virulence probably contributes to therapeutic efficacy in vivo.
AuthorsFrancesco De Seta, Martin Schmidt, Bao Vu, Michael Essmann, Bryan Larsen
JournalThe Journal of antimicrobial chemotherapy (J Antimicrob Chemother) Vol. 63 Issue 2 Pg. 325-36 (Feb 2009) ISSN: 1460-2091 [Electronic] England
PMID19059942 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antifungal Agents
  • Boric Acids
  • boric acid
  • Ergosterol
Topics
  • Antifungal Agents (pharmacology)
  • Bacteria (drug effects)
  • Boric Acids (pharmacology)
  • Candida albicans (chemistry, drug effects)
  • Candidiasis, Vulvovaginal (drug therapy)
  • Colony Count, Microbial
  • Ergosterol (analysis)
  • Female
  • Humans
  • Microbial Sensitivity Tests
  • Microbial Viability

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: