HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Regulator of G-protein signalling expression and function in ovarian cancer cell lines.

Abstract
Regulator of G-protein signalling (RGS)(2) proteins critically regulate signalling cascades initiated by G-protein coupled receptors (GPCRs) by accelerating the deactivation of heterotrimeric G-proteins. Lysophosphatidic acid (LPA) is the predominant growth factor that drives the progression of ovarian cancer by activating specific GPCRs and G-proteins expressed in ovarian cancer cells. We have recently reported that RGS proteins endogenously expressed in SKOV-3 ovarian cancer cells dramatically attenuate LPA stimulated cell signalling. The goal of this study was twofold: first, to identify candidate RGS proteins expressed in SKOV-3 cells that may account for the reported negative regulation of G-protein signalling, and second, to determine if these RGS protein transcripts are differentially expressed among commonly utilized ovarian cancer cell lines and non-cancerous ovarian cell lines. Reverse transcriptase-PCR was performed to determine transcript expression of 22 major RGS subtypes in RNA isolated from SKOV-3, OVCAR-3 and Caov-3 ovarian cancer cell lines and non-cancerous immortalized ovarian surface epithelial (IOSE) cells. Fifteen RGS transcripts were detected in SKOV-3 cell lines. To compare the relative expression levels in these cell lines, quantitative real time RT-PCR was performed on select transcripts. RGS19/GAIP was expressed at similar levels in all four cell lines, while RGS2 transcript was detected at levels slightly lower in ovarian cancer cells as compared to IOSE cells. RGS4 and RGS6 transcripts were expressed at dramatically different levels in ovarian cancer cell lines as compared to IOSE cells. RGS4 transcript was detected in IOSE at levels several thousand fold higher than its expression level in ovarian cancer cells lines, while RGS6 transcript was expressed fivefold higher in SKOV-3 cells as compared to IOSE cells, and over a thousand fold higher in OVCAR-3 and Caov-3 cells as compared to IOSE cells. Functional studies of RGS 2, 6, and 19/GAIP were performed by measuring their effects on LPA stimulated production of inositol phosphates. In COS-7 cells expressing individual exogenous LPA receptors, RGS2 and RSG19/GAIP attenuated signalling initiated by LPA1, LPA2, or LPA3, while RGS6 only inhibited signalling initiated by LPA2 receptors. In SKOV-3 ovarian cancer cells, RGS2 but not RGS6 or RGS19/GAIP, inhibited LPA stimulated inositol phosphate production. In contrast, in CAOV-3 cells RGS19/GAIP strongly attenuated LPA signalling. Thus, multiple RGS proteins are expressed at significantly different levels in cells derived from cancerous and normal ovarian cells and at least two candidate RGS transcripts have been identified to account for the reported regulation of LPA signalling pathways in ovarian cancer cells.
AuthorsJillian H Hurst, Nisha Mendpara, Shelley B Hooks
JournalCellular & molecular biology letters (Cell Mol Biol Lett) Vol. 14 Issue 1 Pg. 153-74 ( 2009) ISSN: 1689-1392 [Electronic] England
PMID18979070 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Inositol Phosphates
  • RGS Proteins
  • RNA, Messenger
  • Receptors, Lysophosphatidic Acid
Topics
  • Animals
  • COS Cells
  • Cell Line, Tumor
  • Chlorocebus aethiops
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Inositol Phosphates (metabolism)
  • Ovarian Neoplasms (genetics, metabolism)
  • RGS Proteins (genetics, metabolism)
  • RNA, Messenger (genetics, metabolism)
  • Receptors, Lysophosphatidic Acid (metabolism)
  • Reverse Transcriptase Polymerase Chain Reaction
  • Signal Transduction

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: