HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Inhibition of arachidonic acid and iron-induced mitochondrial dysfunction and apoptosis by oltipraz and novel 1,2-dithiole-3-thione congeners.

Abstract
4-Methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione (oltipraz), a prototype drug candidate containing a 1,2-dithiole-3-thione moiety, has been widely studied as a cancer chemopreventive agent. Oltipraz and other novel 1,2-dithiole-3-thione congeners have the capability to prevent insulin resistance via AMP-activated protein kinase (AMPK) activation. Arachidonic acid (AA, a proinflammatory fatty acid) exerts a deleterious effect on mitochondria and promotes reactive oxygen species (ROS) production. This study investigated whether AA alone or in combination with iron (catalyst of autooxidation) causes ROS-mediated mitochondrial impairment, and if so, whether oltipraz and synthetic 1,2-dithiole-3-thiones protect mitochondria and cells against excess ROS produced by AA + iron. Oltipraz treatment effectively inhibited mitochondrial permeability transition promoted by AA + iron in HepG2 cells, thereby protecting cells from ROS-induced apoptosis. Oltipraz was found to attenuate apoptosis induced by rotenone (complex I inhibitor), but not that by antimycin A (complex III inhibitor), suggesting that the inhibition of AA-induced apoptosis by oltipraz might be associated with the electron transport system. AMPK activation by oltipraz contributed to cell survival, which was supported by the reversal of oltipraz's restoration of mitochondrial membrane potential by concomitant treatment of compound C. By the same token, an AMPK activator inhibited AA + iron-induced mitochondrial permeability transition with an increase in cell viability. Moreover, new 1,2-dithiole-3-thiones with the capability of AMPK activation protected cells from mitochondrial permeability transition and ROS overproduction induced by AA + iron. Our results demonstrate that oltipraz and new 1,2-dithiole-3-thiones are capable of protecting cells from AA + iron-induced ROS production and mitochondrial dysfunction, which may be associated with AMPK activation.
AuthorsSang Mi Shin, Sang Geon Kim
JournalMolecular pharmacology (Mol Pharmacol) Vol. 75 Issue 1 Pg. 242-53 (Jan 2009) ISSN: 1521-0111 [Electronic] United States
PMID18945820 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Formazans
  • Pyrazines
  • Reactive Oxygen Species
  • Tetrazolium Salts
  • Thiones
  • Thiophenes
  • MTT formazan
  • Arachidonic Acid
  • oltipraz
  • Iron
Topics
  • Apoptosis (drug effects)
  • Arachidonic Acid (antagonists & inhibitors)
  • Carcinoma, Hepatocellular (pathology)
  • Cell Line, Tumor
  • Cell Survival (drug effects)
  • Dose-Response Relationship, Drug
  • Formazans (metabolism)
  • Humans
  • In Situ Nick-End Labeling
  • Iron (pharmacology)
  • Liver Neoplasms (pathology)
  • Membrane Potential, Mitochondrial (drug effects)
  • Mitochondria (drug effects)
  • Pyrazines (pharmacology)
  • Reactive Oxygen Species (analysis, antagonists & inhibitors)
  • Tetrazolium Salts (metabolism)
  • Thiones (pharmacology)
  • Thiophenes
  • Time Factors

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: