HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Visualization of localized pathogen-Induced pH modulation in almond tissues infected by Colletotrichum acutatum using confocal scanning laser microscopy.

Abstract
Modulation of pH within the host during infection of almond by the anthracnose pathogen Colletotrichum acutatum was studied using confocal scanning laser microscopy and the dual emission fluorescence indicator SNARF-1. This highly sensitive method allowed visualization of the spatial distribution of localized pathogen-induced pH modulation within and in proximity to fungal infection structures in host tissue at the cellular level. Ratiometric measurement of fluorescence at two emission wavelengths and in situ calibration allowed the quantification of pH ranges. After incubation of leaf epidermal tissue with SNARF-1, distinct alkaline (pH 8 to > or =9), red-spectrum (650 nm wave length) fluorescent zones developed as partial or complete halos around many fungal appressoria and in infection vesicles at 24 to 36 h after inoculation. In samples taken after 48 to 72 h, colonizing hyphae in the biotrophic phase and subsequently in the necrotrophic phase were also emitting the red fluorescence that extended into the surrounding host tissue, as also verified by depth analyses. Host epidermal cells were intact and apparently alive during the fungal alkalization process, with no visible disruption of cell structure. Generally, the pH of epidermal cells in noninoculated samples or in areas away from the infection in inoculated samples was lower than pH 7 with green (i.e., 500 to 550 nm wave length) fluorescence detected. Using standard electrodes, a significant increase in pH and ammonia concentration in leaf and fruit tissue was also measured but only at advanced stages of disease. In contrast, hyphae of the pathogen Alternaria alternata were mostly acidic and no change in fluorescence was found inside invaded host cells. The sequence of events in the C. acutatum-almond interaction includes penetration, production of ammonia by C. acutatum, and subsequent pH modulation within almond epidermal tissue to an alkaline environment that leads to further colonization of the host.
AuthorsJ Diéguez-Uribeondo, H Förster, J E Adaskaveg
JournalPhytopathology (Phytopathology) Vol. 98 Issue 11 Pg. 1171-8 (Nov 2008) ISSN: 0031-949X [Print] United States
PMID18943405 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Topics
  • Colletotrichum (physiology)
  • Host-Pathogen Interactions
  • Hydrogen-Ion Concentration
  • Microscopy, Confocal
  • Plant Diseases (microbiology)
  • Prunus (metabolism, microbiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: