HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The genetic background modulates susceptibility to mouse liver Mallory-Denk body formation and liver injury.

AbstractUNLABELLED:
Mallory-Denk bodies (MDBs) are hepatocyte inclusions found in several liver diseases and consist primarily of keratins 8 and 18 (K8/K18) and ubiquitin that are cross-linked by transglutaminase-2. We hypothesized that genetic variables contribute to the extent of MDB formation, because not all patients with an MDB-associated liver disease develop inclusions. We tested this hypothesis using five strains of mice (FVB/N, C3H/He, Balb/cAnN, C57BL/6, 129X1/Sv) fed for three months (eight mice per strain) the established MDB-inducing agent 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDB formation was compared using hematoxylin-and-eosin staining, or immunofluorescence staining with antibodies to K8/K18/ubiquitin, or biochemically by blotting with antibodies to transglutaminase-2/p62 proteins and to K8/K18/ubiquitin to detect keratin cross-linking. DDC feeding induced MDBs in all mouse strains, but there were dramatic strain differences that quantitatively varied 2.5-fold (P < 0.05). MDB formation correlated with hepatocyte ballooning, and most ballooned hepatocytes had MDBs. Immunofluorescence assessment was far more sensitive than hematoxylin-and-eosin staining in detecting small MDBs, which out-numbered (by approximately 30-fold to 90-fold) but did not parallel their large counterparts. MDB scores partially reflected the biochemical presence of cross-linked keratin-ubiquitin species but not the changes in liver size or injury in response to DDC. The extent of steatosis correlated with the total (large+small) number of MDBs, and there was a limited correlation between large MDBs and acidophil bodies.
CONCLUSION:
Mouse MDB formation has important genetic contributions that do not correlate with the extent of DDC-induced liver injury. If extrapolated to humans, the genetic contributions help explain why some patients develop MDBs whereas others are less likely to do so. Detection and classification of MDBs using MDB-marker-selective staining may offer unique links to specific histological features of DDC-induced liver injury.
AuthorsShinichiro Hanada, Pavel Strnad, Elizabeth M Brunt, M Bishr Omary
JournalHepatology (Baltimore, Md.) (Hepatology) Vol. 48 Issue 3 Pg. 943-52 (Sep 2008) ISSN: 1527-3350 [Electronic] United States
PMID18697208 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Keratin-18
  • Keratin-8
  • Ubiquitin
  • Dicarbethoxydihydrocollidine
Topics
  • Animals
  • Dicarbethoxydihydrocollidine (pharmacology)
  • Genetic Predisposition to Disease (genetics)
  • Hepatocytes (metabolism, pathology)
  • Hypertrophy
  • Inclusion Bodies (genetics, metabolism)
  • Intermediate Filaments (genetics, metabolism)
  • Keratin-18 (metabolism)
  • Keratin-8 (metabolism)
  • Liver (drug effects, metabolism, pathology)
  • Liver Diseases (genetics, metabolism, pathology)
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C3H
  • Mice, Inbred C57BL
  • Mice, Inbred Strains (genetics)
  • Ubiquitin (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: