HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The dopamine D3/D2 agonist (+)-PD-128,907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] protects against acute and cocaine-kindled seizures in mice: further evidence for the involvement of D3 receptors.

Abstract
Previous findings have demonstrated a protective role for dopamine D(3)/D(2) receptor agonists in the convulsant and lethal effects of acutely administered cocaine. Data are provided here to establish that the protection occurs through a D(3)-linked mechanism and that protection is extended to seizure kindling. The D(3) antagonist SB-277011-A [4-quinolinecarboxamide,N-[trans-4-[2-(6-cyano-3,4-dihydro-2(1H)-isoquinolinyl)ethyl]-cyclohexyl]-(9CI)] prevented the anticonvulsant effect of the D(3)/D(2) receptor agonist (+)-PD-128,907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] on cocaine-induced seizures. The protection afforded by the D(3)/D(2) agonist, (+)-PD-128,907, was eliminated in D(3) receptor-deficient mice. In D(2) receptor knockout mice, the anticonvulsant effects of (+)-PD-128,907 were preserved. (+)-PD-128,907 also prevented the acquisition and expression of cocaine-kindled seizures engendered by repeated daily dosing with 60 mg/kg cocaine. (+)-PD-128,907 also blocked the seizures induced in mice fully seizure kindled to cocaine. Although repeated dosing with cocaine increased the potency of cocaine to produce seizures and lethality (decreased ED(50) values), daily coadministration of (+)-PD-128,907 significantly prevented this potency shift. In mice treated daily with cocaine and (+)-PD-128,907, the density, but not the affinity, of D(3) receptors was increased. The specificity with which (+)-PD-128,907 acts upon this cocaine-driven process was demonstrated by the lack of a significant effect of (+)-PD-128,907 on seizure kindling to a GABA(A) receptor antagonist, pentylenetetrazol. Taken together and with literature findings, the data indicate that dopamine D(3) receptors function in the initiation of a dampening mechanism against the toxic effects of cocaine, a finding that might have relevance to psychiatric disorders of drug dependence, schizophrenia, and bipolar depression.
AuthorsJ M Witkin, B Levant, A Zapata, R Kaminski, M Gasior
JournalThe Journal of pharmacology and experimental therapeutics (J Pharmacol Exp Ther) Vol. 326 Issue 3 Pg. 930-8 (Sep 2008) ISSN: 1521-0103 [Electronic] United States
PMID18566292 (Publication Type: Comparative Study, Journal Article)
Chemical References
  • Benzopyrans
  • Oxazines
  • Receptors, Dopamine D2
  • Receptors, Dopamine D3
  • 3,4,4a,10b-tetrahydro-4-propyl-2H,5H-(1)benzopyrano(4,3-b)-1,4-oxazin-9-ol
  • Cocaine
  • Dopamine
Topics
  • Animals
  • Benzopyrans (pharmacology, therapeutic use)
  • Cocaine (toxicity)
  • Dopamine (physiology)
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Oxazines (pharmacology, therapeutic use)
  • Protein Binding (drug effects, physiology)
  • Receptors, Dopamine D2 (agonists, physiology)
  • Receptors, Dopamine D3 (agonists, physiology)
  • Seizures (chemically induced, physiopathology, prevention & control)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: