HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The tripeptide feG inhibits leukocyte adhesion.

AbstractBACKGROUND:
The tripeptide feG (D-Phe-D-Glu-Gly) is a potent anti-inflammatory peptide that reduces the severity of type I immediate hypersensitivity reactions, and inhibits neutrophil chemotaxis and adhesion to tissues. feG also reduces the expression of beta1-integrin on circulating neutrophils, but the counter ligands involved in the anti-adhesive actions of the peptide are not known. In this study the effects of feG on the adhesion of rat peritoneal leukocytes and extravasated neutrophils to several different integrin selective substrates were evaluated.
RESULTS:
The adhesion of peritoneal leukocytes and extravasated neutrophils from rats to adhesive proteins coated to 96-well plates was dependent upon magnesium (Mg2+) ion, suggestive of integrin-mediated adhesion. feG inhibited leukocyte adhesion, but only if the cells were stimulated with PAF (10-9M), indicating that feG's actions in vitro require cell activation. In the dose range of 10-10M to 10-12M feG inhibited the adhesion of peritoneal leukocytes to fibrinogen and fibronectin, but not IgG, vitronectin or ICAM-1. feG inhibited the binding of extravasated neutrophils to heparin, IgG, fibronectin and CD16 antibody. Antigen-challenge of sensitized rats reduced the adhesion of peritoneal leukocytes to most substrates and abolished the inhibitory effects of feG. However, pretreating the animals with intraperitoneal feG (100 mug/kg) 18 h before collecting the cells from the antigen-challenged animal restored the inhibition of adhesion by in vitro feG of peritoneal leukocytes and extravasated neutrophils to fibronectin.
CONCLUSION:
The modulation of leukocyte adhesion by feG appears to involve actions on alphaMbeta2 integrin, with a possible interaction with the low affinity FcgammaRIII receptor (CD16). The modulation of cell adhesion by feG is dual in nature. When administered in vivo, feG prevents inflammation-induced reductions in cell adhesion, as well as restoring its inhibitory effect in vitro. The mechanism by which in vivo treatment with feG exerts these effects remains to be elucidated.
AuthorsRonald D Mathison, Emily Christie, Joseph S Davison
JournalJournal of inflammation (London, England) (J Inflamm (Lond)) Vol. 5 Pg. 6 (May 20 2008) ISSN: 1476-9255 [Electronic] England
PMID18492254 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: