HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Upregulation and redistribution of ephrinB and EphB receptor in dorsal root ganglion and spinal dorsal horn neurons after peripheral nerve injury and dorsal rhizotomy.

Abstract
EphrinB-EphB receptor signaling plays diverse roles during development, but recently has been implicated in synaptic plasticity in the matured nervous system and in pain processes. The present study investigated the correlation between expression of ephrinB and EphB receptor proteins and chronic constriction injury (CCI) of the sciatic nerve and dorsal rhizotomy (DR) in dorsal root ganglion (DRG) and spinal cord (SC); and interaction of CCI and DR on expression of these signals. Adult, male Sprague-Dawley rats were employed and thermal sensitivity was determined in the sham operated CCI and DR rats. Western blot and immunobiochemistry analysis and immunofluorescence staining techniques were used to detect the expression and location of the ephrinB-EphB receptor proteins in DRG and SC. The results showed that expression of ephrinB1 and EphB1 receptor proteins was significantly upregulated in DRG and SC in a time-dependent manner corresponding to the development of thermal hyperalgesia after CCI. The increased expression is predominately located in the medium- and small-sized DRG neurons, the superficial layers of spinal dorsal horn (DH) neurons, and the IB4 positive nociceptive terminals. DR increases ephrinB1 in DRG, not SC and EphB receptor in SC, not DRG. DR suppressed CCI-induced upregulation of ephrinB1 in SC and EphB1 receptor in DRG and SC. These findings indicate that ephrinB-EphB receptor activation and redistribution in DRG and DH neurons after nerve injury could contribute to neuropathic pain. This study may also provide a new mechanism underlying DR-induced analgesia in clinic.
AuthorsXue-Jun Song, Jun-Li Cao, Hao-Chuan Li, Ji-Hong Zheng, Xue-Song Song, Li-Ze Xiong
JournalEuropean journal of pain (London, England) (Eur J Pain) Vol. 12 Issue 8 Pg. 1031-9 (Nov 2008) ISSN: 1532-2149 [Electronic] England
PMID18321739 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Ephrin-B1
  • Receptors, Eph Family
Topics
  • Animals
  • Cell Size
  • Denervation
  • Disease Models, Animal
  • Ephrin-B1 (metabolism)
  • Ganglia, Spinal (metabolism, physiopathology)
  • Hyperalgesia (metabolism, physiopathology)
  • Male
  • Neurons, Afferent (metabolism)
  • Nociceptors (metabolism, physiopathology)
  • Pain Measurement (methods)
  • Pain Threshold (physiology)
  • Peripheral Nervous System Diseases (metabolism, physiopathology)
  • Posterior Horn Cells (metabolism)
  • Presynaptic Terminals (metabolism)
  • Radiculopathy (metabolism, physiopathology)
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Eph Family (metabolism)
  • Rhizotomy
  • Sciatic Neuropathy (metabolism, physiopathology)
  • Spinal Nerve Roots (injuries, metabolism, physiopathology)
  • Up-Regulation (physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: