HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Regulation of avoidant behaviors and pain by the anti-inflammatory tyrosine phosphatase SHP-1.

Abstract
The protein tyrosine phosphatase SHP-1 is a critical regulator of cytokine signaling and inflammation. Mice homozygous for a null allele at the SHP-1 locus have a phenotype of severe inflammation and are hyper-responsive to the TLR4 ligand LPS. TLR4 stimulation in the CNS has been linked to both neuropathic pain and sickness behaviors. To determine if reduction in SHP-1 expression affects LPS-induced behaviors, responses of heterozygous SHP-1-deficient (me/+) and wild-type (+/+) mice to LPS were measured. Chronic (4-week) treatment with LPS induced avoidant behaviors indicative of fear/anxiety in me/+, but not +/+, mice. These behaviors were correlated with a LPS-induced type 2 cytokine, cytokine receptor, and immune effector arginase profile in the brains of me/+ mice not found in +/+ mice. Me/+ mice also had a constitutively greater level of TLR4 in the CNS than +/+ mice. Additionally, me/+ mice displayed constitutively increased thermal sensitivity compared to +/+ mice, measured by the tail-flick test. Moreover, me/+ glial cultures were more responsive to LPS than +/+ glia. Therefore, the reduced expression of SHP-1 in me/+ imparts haploinsufficiency with respect to the control of CNS TLR4 and pain signaling. Furthermore, type 2 cytokines become prevalent during chronic TLR4 hyperstimulation in the CNS and are associated positively with behaviors that are usually linked to type 1 pro-inflammatory cytokines. These findings question the notion that type 2 immunity is solely anti-inflammatory in the CNS and indicate that type 2 immunity induces/potentiates CNS inflammatory processes.
AuthorsChad A Hudson, George P Christophi, Ling Cao, Ross C Gruber, Paul T Massa
JournalNeuron glia biology (Neuron Glia Biol) Vol. 2 Issue 4 Pg. 235-46 (Nov 2006) ISSN: 1741-0533 [Electronic] England
PMID18250891 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: