HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Enhanced cytotoxicity of saporin by polyamidoamine dendrimer conjugation and photochemical internalization.

Abstract
Because of the lack of membrane binding subunit, type I ribosome-inactivating proteins (RIPs) are not very toxic to cells unless action is taken to allow for toxin internalization to the cytosol. To overcome the potential barriers that greatly hinder the cellular uptake and intracellular release of saporin, a type I RIP, we used generation 4 polyamidoamine (PAMAM) dendrimer as the carrier to improve its endocytic uptake, passive tumor targeting, and implemented the photochemical internalization (PCI) technology to facilitate its cytosolic release. Our results showed that the cellular uptake of saporin was increased after conjugation with the PAMAM dendrimer and the cytotoxic effect was improved by more than 1 order of magnitude. The cytotoxicity of free saporin and PAMAM-saporin was further enhanced by the PCI technology. PCI changed the mechanism of cellular uptake of free saporin and then caused more saporin entering into the cells. After the PCI treatment, PAMAM-saporin was not only internalized into the cytosol but also efficiently entered the nuclei. Our results indicated that conjugating to PAMAM dendrimer is a possible approach to enhance the cellular uptake of saporin. PCI is a promising technology to significantly enhance the cytotoxicity of both free saporin and PAMAM-saporin. Combining both polymer conjugation and PCI approaches may improve the efficacy of RIPs in cancer therapy.
AuthorsPing-Shan Lai, Chin-Ling Pai, Cheng-Liang Peng, Ming-Jium Shieh, Kristian Berg, Pei-Jen Lou
JournalJournal of biomedical materials research. Part A (J Biomed Mater Res A) Vol. 87 Issue 1 Pg. 147-55 (Oct 2008) ISSN: 1552-4965 [Electronic] United States
PMID18085655 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antineoplastic Agents, Phytogenic
  • Dendrimers
  • Drug Carriers
  • Nylons
  • PAMAM-G4
  • Photosensitizing Agents
  • Ribosome Inactivating Proteins, Type 1
  • Saporins
Topics
  • Antineoplastic Agents, Phytogenic (pharmacology)
  • Cell Line, Tumor
  • Cytosol (metabolism)
  • Dendrimers (pharmacology)
  • Drug Carriers (pharmacology)
  • Endocytosis (drug effects)
  • Humans
  • Microscopy, Confocal
  • Nylons (pharmacology)
  • Photochemistry
  • Photochemotherapy
  • Photosensitizing Agents (pharmacology)
  • Ribosome Inactivating Proteins, Type 1 (pharmacology)
  • Saporins

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: