HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mass spectrometry-based systems approach for identification of inhibitors of Plasmodium falciparum fatty acid synthase.

Abstract
The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (beta-ketoacyl-ACP synthase), FabG (beta-ketoacyl-ACP reductase), FabZ (beta-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (-)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.
AuthorsShilpi Sharma, Shailendra Kumar Sharma, Rahul Modak, Krishanpal Karmodiya, Namita Surolia, Avadhesha Surolia
JournalAntimicrobial agents and chemotherapy (Antimicrob Agents Chemother) Vol. 51 Issue 7 Pg. 2552-8 (Jul 2007) ISSN: 0066-4804 [Print] United States
PMID17485508 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Cerulenin
  • Triclosan
  • catechin gallate
  • Catechin
  • Fatty Acid Synthases
Topics
  • Animals
  • Catechin (analogs & derivatives, pharmacology)
  • Cerulenin (pharmacology)
  • Fatty Acid Synthases (analysis, antagonists & inhibitors, isolation & purification)
  • Mass Spectrometry (methods)
  • Models, Biological
  • Plasmodium falciparum (enzymology)
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Triclosan (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: