HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Disparity in the induction of glutathione depletion, ROS formation, poly(ADP-ribose) polymerase-1 activation, and apoptosis by quinonoid derivatives of naphthalene in human cultured cells.

Abstract
The purpose of this study is to examine the differences in the induction of cytotoxic effects and poly(ADP-ribose) polymerase-1 activation in human MCF-7 breast cancer cells by quinonoid derivatives of naphthalene, including 1,2-naphthalenediol (NCAT), 1,4-naphthalenediol (NHQ), 1,2-naphthoquinone (1,2-NQ), and 1,4-naphthoquinone (1,4-NQ). Results from the cytotoxic response analyses in cells indicated that all naphthalene quinonoids induced cell death in MCF-7 cells at concentrations ranging from 0.1 to 100microM where NHQ and 1,4-NQ were more efficient than NCAT and 1,2-NQ in the induction of cell death. Results from Western blot analyses confirmed that treatment of cells with NCAT and NHQ resulted in up-regulation of p53 protein expression and a significant shift in bax/bcl2 ratio, suggesting the induction of p53-dependent apoptosis in MCF-7 cells. Additionally, we observed that all naphthalene quinonoids induced increases in reactive oxygen species (ROS) formation and glutathione (GSH) depletion in MCF-7 cells. The induction of ROS formation and GSH depletion in cells by naphthalene quinonoids decreases in the rank order 1,4-NQ>NHQ>1,2-NQ approximately equal to NCAT. Further investigation indicated that least-squares estimates of the overall rates of elimination (k(e)) of naphthalene quinonoids in MCF-7 cells decreased in the rank order 1,4-NQ>1,2-NQ>NHQ>NCAT. Values of k(e) were estimated to be between 0.280h(-1)(T(1/2)=151min) and 13.8h(-1)(T(1/2)=3.05min). These results provide evidence that the para-isomeric form of naphthalene quinonoids tend to induce acute production of ROS and alterations in intracellular redox status in cells, leading to the subsequent cell death. Further, all naphthalene quinonoids induced decreases in intracellular NAD(P)H and NAD(+) in MCF-7 cells at non-cytotoxic concentrations. The reduction of intracellular NAD(P)H in cells exposed to NCAT and 1,2-NQ was blocked by two types of poly(ADP-ribose) polymerase (PARP) inhibitors whereas PARP inhibitors did not prevent the reduction of NAD(P)H in cells exposed to NHQ and 1,4-NQ. Further investigation confirmed that increases in the number of DNA single-strand breaks were detected in MCF-7 cells exposed to NCAT and 1,2-NQ as measured by the single-cell gel electrophoresis (Comet) assay whereas NHQ and 1,4-NQ did not induce increases in the number of single-strand breaks in MCF-7 cells. Overall, results from our investigation suggest that while NHQ and 1,4-NQ are more efficient in the induction of cell death, NCAT and 1,2-NQ are prone to induce depletion of NAD(P)H and NAD(+) mediated by PARP-1 activation through formation of DNA single-strand breaks in human cultured cells.
AuthorsChia-Hua Lin, Chuan-Chen Huang, Tzu-Wen Wang, Ying-Jan Wang, Po-Hsiung Lin
JournalChemico-biological interactions (Chem Biol Interact) Vol. 165 Issue 3 Pg. 200-10 (Feb 20 2007) ISSN: 0009-2797 [Print] Ireland
PMID17224139 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antineoplastic Agents
  • Naphthalenes
  • Proto-Oncogene Proteins c-bcl-2
  • Reactive Oxygen Species
  • Tumor Suppressor Protein p53
  • bcl-2-Associated X Protein
  • naphthalene
  • PARP1 protein, human
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerases
  • Glutathione
Topics
  • Antineoplastic Agents (chemistry, pharmacology)
  • Apoptosis (drug effects)
  • Cell Line, Tumor
  • DNA Damage
  • Dose-Response Relationship, Drug
  • Enzyme Activation
  • Glutathione (metabolism)
  • Humans
  • Naphthalenes (chemistry, pharmacology)
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerases (metabolism)
  • Proto-Oncogene Proteins c-bcl-2 (metabolism)
  • Reactive Oxygen Species (metabolism)
  • Tumor Suppressor Protein p53 (metabolism)
  • bcl-2-Associated X Protein (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: