HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Comet fluorescence in situ hybridization analysis for oxidative stress-induced DNA damage in colon cancer relevant genes.

Abstract
Our objective was to study whether products of oxidative stress, such as hydrogen peroxide (H(2)O(2)), trans-2-hexenal, and 4-hydroxy-2-nonenal (HNE), cause DNA damage in genes, relevant for human colon cancer. For this, total DNA damage was measured in primary human colon cells and colon adenoma cells (LT97) using the single-cell gel electrophoresis assay, known as "Comet Assay." APC, KRAS, and TP53 were marked in the comet images using fluorescence in situ hybridization (Comet FISH). The migration of APC, KRAS, or TP53 signals into the comet tails was quantified and compared to total DNA damage. All three substances were clearly genotoxic for APC, KRAS, and TP53 genes and total DNA in both types of cells. In primary colon cells, TP53 gene was more sensitive toward H(2)O(2), trans-2-hexenal, and HNE than total DNA was. In LT97 cells, the TP53 gene was more sensitive only toward trans-2-hexenal and HNE. APC and KRAS genes were more susceptible than total DNA to both lipid peroxidation products but only in primary colon cells. This suggests genotoxic effects of lipid peroxidation products in APC, KRAS, and TP53 genes. In LT97 cells, TP53 was more susceptible than APC and KRAS toward HNE. Based on the reported gatekeeper properties of TP53, which in colon adenoma is frequently altered to yield carcinoma, this implies that HNE is likely to contribute to cancer progression. This new experimental approach facilitates studies on effects of nutrition-related carcinogens in relevant target genes.
AuthorsMichael Glei, Anja Schaeferhenrich, Uwe Claussen, Alma Kuechler, Thomas Liehr, Anja Weise, Brigitte Marian, Wolfgang Sendt, Beatrice L Pool-Zobel
JournalToxicological sciences : an official journal of the Society of Toxicology (Toxicol Sci) Vol. 96 Issue 2 Pg. 279-84 (Apr 2007) ISSN: 1096-6080 [Print] United States
PMID17192441 (Publication Type: Comparative Study, Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Adenomatous Polyposis Coli Protein
  • Aldehydes
  • Tumor Suppressor Protein p53
  • 2-hexenal
  • Hydrogen Peroxide
  • ras Proteins
  • 4-hydroxy-2-nonenal
Topics
  • Adenomatous Polyposis Coli Protein (genetics)
  • Aged
  • Aldehydes (pharmacology)
  • Cell Line, Tumor
  • Cells, Cultured
  • Colon (cytology, drug effects, metabolism)
  • Colonic Neoplasms (genetics, pathology)
  • Comet Assay (methods)
  • DNA Damage
  • Dose-Response Relationship, Drug
  • Female
  • Humans
  • Hydrogen Peroxide (pharmacology)
  • In Situ Hybridization, Fluorescence (methods)
  • Lipid Peroxidation (drug effects)
  • Male
  • Middle Aged
  • Oxidative Stress (physiology)
  • Tumor Suppressor Protein p53 (genetics)
  • ras Proteins (genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: