HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A feedback transcriptional mechanism controls the level of the arginine/lysine transporter cat-1 during amino acid starvation.

Abstract
The adaptive response to amino acid limitation in mammalian cells inhibits global protein synthesis and promotes the expression of proteins that protect cells from stress. The arginine/lysine transporter, cat-1, is induced during amino acid starvation by transcriptional and post-transcriptional mechanisms. It is shown in the present study that the transient induction of cat-1 transcription is regulated by the stress response pathway that involves phosphorylation of the translation initiation factor, eIF2 (eukaryotic initiation factor-2). This phosphorylation induces expression of the bZIP (basic leucine zipper protein) transcription factors C/EBP (CCAAT/enhancer-binding protein)-beta and ATF (activating transcription factor) 4, which in turn induces ATF3. Transfection experiments in control and mutant cells, and chromatin immunoprecipitations showed that ATF4 activates, whereas ATF3 represses cat-1 transcription, via an AARE (amino acid response element), TGATGAAAC, in the first exon of the cat-1 gene, which functions both in the endogenous and in a heterologous promoter. ATF4 and C/EBPbeta activated transcription when expressed in transfected cells and they bound as heterodimers to the AARE in vitro. The induction of transcription by ATF4 was inhibited by ATF3, which also bound to the AARE as a heterodimer with C/EBPbeta. These results suggest that the transient increase in cat-1 transcription is due to transcriptional activation caused by ATF4 followed by transcriptional repression by ATF3 via a feedback mechanism.
AuthorsAlex B Lopez, Chuanping Wang, Charlie C Huang, Ibrahim Yaman, Yi Li, Kaushik Chakravarty, Peter F Johnson, Cheng-Ming Chiang, Martin D Snider, Ronald C Wek, Maria Hatzoglou
JournalThe Biochemical journal (Biochem J) Vol. 402 Issue 1 Pg. 163-73 (Feb 15 2007) ISSN: 1470-8728 [Electronic] England
PMID17042743 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • Activating Transcription Factor 3
  • Amino Acids
  • CCAAT-Enhancer-Binding Protein-beta
  • Cationic Amino Acid Transporter 1
  • Eukaryotic Initiation Factor-2
  • RNA, Messenger
  • Activating Transcription Factor 4
  • Arginine
  • Lysine
Topics
  • Activating Transcription Factor 3 (metabolism)
  • Activating Transcription Factor 4 (metabolism)
  • Amino Acids (metabolism)
  • Animals
  • Arginine (metabolism)
  • CCAAT-Enhancer-Binding Protein-beta (metabolism)
  • Cationic Amino Acid Transporter 1 (genetics, metabolism)
  • Dimerization
  • Eukaryotic Initiation Factor-2 (metabolism)
  • Feedback, Physiological
  • Gene Expression Regulation
  • Lysine (metabolism)
  • Phosphorylation
  • Promoter Regions, Genetic
  • RNA, Messenger (metabolism)
  • Rats
  • Transcription, Genetic
  • Transfection
  • Tumor Cells, Cultured

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: