HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses.

Abstract
Neuraminidase inhibitors (NAIs) are antivirals designed to target conserved residues at the neuraminidase (NA) enzyme active site in influenza A and B viruses. The conserved residues that interact with NAIs are under selective pressure, but only a few have been linked to resistance. In the A/Wuhan/359/95 (H3N2) recombinant virus background, we characterized seven charged, conserved NA residues (R118, R371, E227, R152, R224, E276, and D151) that directly interact with the NAIs but have not been reported to confer resistance to NAIs. These NA residues were replaced with amino acids that possess side chains having similar properties to maintain their original charge. The NA mutations we introduced significantly decreased NA activity compared to that of the A/Wuhan/359/95 recombinant wild-type and R292K (an NA mutation frequently reported to confer resistance) viruses, which were analyzed for comparison. However, the recombinant viruses differed in replication efficiency when we serially passaged them in vitro; the growth of the R118K and E227D viruses was most impaired. The R224K, E276D, and R371K mutations conferred resistance to both zanamivir and oseltamivir, while the D151E mutation reduced susceptibility to oseltamivir only (approximately 10-fold) and the R152K mutation did not alter susceptibility to either drug. Because the R224K mutation was genetically unstable and the emergence of the R371K mutation in the N2 subtype is statistically unlikely, our results suggest that only the E276D mutation is likely to emerge under selective pressure. The results of our study may help to optimize the design of NAIs.
AuthorsHui-Ling Yen, Erich Hoffmann, Garry Taylor, Christoph Scholtissek, Arnold S Monto, Robert G Webster, Elena A Govorkova
JournalJournal of virology (J Virol) Vol. 80 Issue 17 Pg. 8787-95 (Sep 2006) ISSN: 0022-538X [Print] United States
PMID16912325 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Antiviral Agents
  • Neuraminidase
Topics
  • Animals
  • Antiviral Agents (pharmacology)
  • Binding Sites (genetics)
  • Cell Line
  • Drug Resistance, Viral
  • Humans
  • Influenza A Virus, H3N2 Subtype (drug effects, enzymology, genetics, physiology)
  • Microbial Sensitivity Tests (methods)
  • Mutation
  • Neuraminidase (antagonists & inhibitors, chemistry, metabolism)
  • Recombination, Genetic
  • Viral Plaque Assay

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: