HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Energy homeostasis and cachexia in chronic kidney disease.

Abstract
Loss of protein stores, presenting as clinical wasting, is reported to have a prevalence of 30-60% and is an important risk factor for mortality in chronic kidney disease (CKD) patients. There is debate as to whether the clinical wasting in CKD patients represents malnutrition or cachexia. Malnutrition results from inadequate intake of nutrients, despite a good appetite, and manifests as weight loss associated with adaptive metabolic responses such as decreased basic metabolic rate and preservation of lean body mass at the expense of fat mass. Furthermore, the abnormalities in malnutrition can usually be overcome simply by supplying more food or altering the composition of the diet. In contrast, cachexia is characterized by maladaptive responses such as anorexia, elevated basic metabolic rate, wasting of lean body tissue, and underutilization of fat tissue for energy. Diet supplementation and intradialytic parenteral nutrition have not been successful in reversing cachexia in CKD. The etiology of cachexia in CKD is complex and multifactorial. Two major factors causing muscle wasting in uremia are acidosis and decreased insulin responses. Inflammation secondary to cytokines may also play a significant role. The hypoalbuminemia of CKD patients is principally associated with inflammation and not changes in food intake. There is also recent evidence that hypothalamic neuropeptides may be important in the downstream signaling of cytokines in the pathogenesis of cachexia in CKD. Elevated circulating levels of cytokines, such as leptin, may be an important cause of uremia-associated cachexia via signaling through the central melanocortin system. Further research into the molecular pathways leading to cachexia may lead to novel therapeutic therapy for this devastating and potentially fatal complication of CKD.
AuthorsRobert H Mak, Wai Cheung
JournalPediatric nephrology (Berlin, Germany) (Pediatr Nephrol) Vol. 21 Issue 12 Pg. 1807-14 (Dec 2006) ISSN: 0931-041X [Print] Germany
PMID16897005 (Publication Type: Journal Article, Review)
Topics
  • Animals
  • Cachexia (physiopathology)
  • Chronic Disease
  • Energy Metabolism (physiology)
  • Homeostasis (physiology)
  • Humans
  • Kidney Diseases (physiopathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: