HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Acute neurotoxic effects of mancozeb and maneb in mesencephalic neuronal cultures are associated with mitochondrial dysfunction.

Abstract
Recent studies suggest that exposure to agrochemicals may contribute to the development of idiopathic Parkinson's disease. Maneb (MB), a widely used Mn-containing ethylene-bis-dithiocarbamate (EBDC) fungicide, has been implicated in selective dopaminergic neurotoxicity. In this study, we examine the potential neurotoxicity of mancozeb (MZ), a widely used EBDC fungicide that is structurally similar to MB, but contains both Zn and Mn. Primary mesencephalic cells isolated from Sprague-Dawley embryonic day 15 rat embryos were exposed in vitro to either MZ or MB to compare their cytotoxic potential. Exposure to 10-120 microM MZ or MB for 24h resulted in a dose-dependent toxicity in both the dopamine (DA) and GABA mesencephalic populations as assessed by a functional assay for high affinity transporter activity. Consistent with this, cell viability as well as tyrosine hydroxylase-positive neurons decreased with increasing doses of MZ or MB. Toxic potencies for MZ and MB were similar and no difference in sensitivity between the DA and GABA populations was observed with the fungicides. Exposure to ethylene thiourea, the major metabolite of either MZ or MB, was not toxic, implicating the parent compound in toxicity. Both the organic and Mn metal components of the fungicides were found to contribute to toxicity. Non-toxic exposures to the fungicides decreased ATP levels in a dose-dependent manner suggesting impairment of energy metabolism. In whole mitochondrial preparations isolated from adult rat brains, MZ and MB inhibited NADH-linked state 3 respiration. Mild to moderate mitochondrial uncoupling was also observed in response to the fungicides. In conclusion, our findings indicate that acute exposure to high doses of MZ and MB produce equipotent toxic effects in both DA and GABA neurons that may be associated with perturbations in mitochondrial respiration.
AuthorsLisa M Domico, Gail D Zeevalk, Laura P Bernard, Keith R Cooper
JournalNeurotoxicology (Neurotoxicology) Vol. 27 Issue 5 Pg. 816-25 (Sep 2006) ISSN: 0161-813X [Print] Netherlands
PMID16889834 (Publication Type: Comparative Study, Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Fungicides, Industrial
  • Maneb
  • gamma-Aminobutyric Acid
  • Adenosine Triphosphate
  • Tyrosine 3-Monooxygenase
  • mancozeb
  • Dopamine
  • Zineb
Topics
  • Adenosine Triphosphate (metabolism)
  • Analysis of Variance
  • Animals
  • Cell Survival (drug effects)
  • Cells, Cultured
  • Dopamine (metabolism)
  • Dose-Response Relationship, Drug
  • Embryo, Mammalian
  • Female
  • Fungicides, Industrial (toxicity)
  • Male
  • Maneb (toxicity)
  • Mesencephalon (cytology)
  • Mitochondria (drug effects, physiology)
  • Neurons (drug effects, ultrastructure)
  • Oxygen Consumption (physiology)
  • Pregnancy
  • Rats
  • Rats, Sprague-Dawley
  • Tyrosine 3-Monooxygenase (metabolism)
  • Zineb (toxicity)
  • gamma-Aminobutyric Acid (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: