HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Liver X receptor (LXR)-beta regulation in LXRalpha-deficient mice: implications for therapeutic targeting.

Abstract
The nuclear receptors liver X receptor (LXR) LXRalpha and LXRbeta are differentially expressed ligand-activated transcription factors that induce genes controlling cholesterol homeostasis and lipogenesis. Synthetic ligands for both receptor subtypes activate ATP binding cassette transporter A1 (ABCA1)-mediated cholesterol metabolism, increase reverse cholesterol transport, and provide atheroprotection in mice. However, these ligands may also increase hepatic triglyceride (TG) synthesis via a sterol response element binding protein 1c (SREBP-1c)-dependent mechanism through a process reportedly regulated by LXRalpha. We studied pan-LXRalpha/beta agonists in LXRalpha knockout mice to assess the contribution of LXRbeta to the regulation of selected target genes. In vitro dose-response studies with macrophages from LXRalpha-/- and beta-/- mice confirm an equivalent role for LXRalpha and LXRbeta in the regulation of ABCA1 and SREBP-1c gene expression. Cholesterol-efflux studies verify that LXRbeta can drive apoA1-dependent cholesterol mobilization from macrophages. The in vivo role of LXRbeta in liver was further evaluated by treating LXRalpha-/- mice with a pan-LXRalpha/beta agonist. High-density lipoprotein (HDL) cholesterol increased without significant changes in plasma TG or very low density lipoprotein. Analysis of hepatic gene expression consistently revealed less activation of ABCA1 and SREBP-1c genes in the liver of LXRalpha null animals than in treated wild-type controls. In addition, hepatic CYP7A1 and several genes involved in fatty acid/TG biosynthesis were not induced. In peripheral tissues from these LXRalpha-null mice, LXRbeta activation increases ABCA1 and SREBP-1c gene expression in a parallel manner. However, putative elevation of SREBP-1c activity in these tissues did not cause hypertriglyceridemia. In summary, selective LXRbeta activation is expected to stimulate ABCA1 gene expression in macrophages, contribute to favorable HDL increases, but circumvent hepatic LXRalpha-dominated lipogenesis.
AuthorsElaine M Quinet, Dawn A Savio, Anita R Halpern, Liang Chen, Gertrude U Schuster, Jan-Ake Gustafsson, Mike D Basso, Ponnal Nambi
JournalMolecular pharmacology (Mol Pharmacol) Vol. 70 Issue 4 Pg. 1340-9 (Oct 2006) ISSN: 0026-895X [Print] United States
PMID16825483 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • ATP Binding Cassette Transporter 1
  • ATP-Binding Cassette Transporters
  • DNA-Binding Proteins
  • Insig1 protein, mouse
  • Lipoproteins, HDL
  • Liver X Receptors
  • Membrane Proteins
  • Nr1h3 protein, mouse
  • Orphan Nuclear Receptors
  • Protein Isoforms
  • RNA, Messenger
  • Receptors, Cytoplasmic and Nuclear
  • Sterol Regulatory Element Binding Protein 1
Topics
  • ATP Binding Cassette Transporter 1
  • ATP-Binding Cassette Transporters (metabolism)
  • Animals
  • DNA-Binding Proteins (genetics, metabolism, physiology)
  • Dose-Response Relationship, Drug
  • Gene Expression Regulation
  • Hepatocytes (metabolism)
  • Lipid Metabolism
  • Lipoproteins, HDL (blood)
  • Liver (metabolism)
  • Liver X Receptors
  • Macrophages (metabolism)
  • Membrane Proteins (metabolism)
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Orphan Nuclear Receptors
  • Protein Isoforms
  • RNA, Messenger (metabolism)
  • Receptors, Cytoplasmic and Nuclear (genetics, metabolism, physiology)
  • Sterol Regulatory Element Binding Protein 1 (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: