HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Role of P450 aromatase in sex-specific astrocytic cell death.

Abstract
Female animals are protected from ischemic brain damage relative to age-matched males, in part through protection provided by endogenous estradiol. In brain, estradiol is produced from testosterone by cytochrome P450 aromatase (cyp 19), a steroid synthetic enzyme present in astrocytes. We tested the hypothesis that astrocytes derived from neonatal female rat brain are less susceptible than male cells to oxygen-glucose deprivation (OGD), and that this endogenous protection is associated with enhanced aromatase activity. Primary cultured cortical astrocytes were prepared from male and female rat pups separately and grown to confluence in estrogen-free media. Cell death in response to OGD, alone or in combination with hydrogen peroxide, lipopolysaccharides, interleukin-1beta, tissue necrosis factor-alpha, or nitric oxide (NO) donor diethylenetriamine/nitric oxide adduct (DETA/NO) was quantified as the ratio of propidium iodide to calcein AM-positive cells. Aromatase activity and cyp19 mRNA and protein levels were measured in cultures from each sex. Female astrocytes are more resistant to OGD and oxidant cell death induced by H(2)O(2) , but sustain greater cell death when inflammatory mediators are combined with OGD compared with OGD alone. Media transfer from female to male cells conferred protection against OGD-induced cell death. Aromatase activity and expression is greater in female than in male astrocytes. The aromatase inhibitor, Arimidex (100 nmol/L), abolishes sex differences in OGD-induced cell death, whereas treatment with 17beta-estradiol (10 nmol/L) protects cells of either sex. We conclude that astrocytes isolated from neonatal cortex exhibit marked sex differences in sensitivity to OGD, in part because of enhanced aromatization and estradiol formation in female cells.
AuthorsMingyue Liu, Patricia D Hurn, Charles E Roselli, Nabil J Alkayed
JournalJournal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism (J Cereb Blood Flow Metab) Vol. 27 Issue 1 Pg. 135-41 (Jan 2007) ISSN: 0271-678X [Print] United States
PMID16736049 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Interleukin-1beta
  • Lipopolysaccharides
  • Tumor Necrosis Factor-alpha
  • Nitric Oxide
  • RNA
  • Hydrogen Peroxide
  • Aromatase
  • Glucose
Topics
  • Animals
  • Aromatase (metabolism)
  • Astrocytes (drug effects, enzymology, physiology)
  • Blotting, Western
  • Cell Death (drug effects, physiology)
  • Cell Hypoxia (physiology)
  • Cells, Cultured
  • Female
  • Glucose (deficiency)
  • Hydrogen Peroxide (toxicity)
  • Interleukin-1beta (toxicity)
  • Lipopolysaccharides (toxicity)
  • Male
  • Nitric Oxide (toxicity)
  • Oxidative Stress (drug effects)
  • RNA (biosynthesis, isolation & purification)
  • Rats
  • Rats, Sprague-Dawley
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sex Characteristics
  • Tumor Necrosis Factor-alpha (toxicity)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: