HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model.

Abstract
Treatment of malignant gliomas represents one of the most formidable challenges in oncology. The combination of surgery, radiation, and chemotherapy yields median survivals of less than one year. Here we demonstrate the use of a minimally invasive surgical technique, convection-enhanced delivery (CED), for local administration of a novel nanoparticle liposome containing topotecan. CED of this liposomal topotecan (Ls-TPT) resulted in extended brain tissue retention (t1/2 = 1.5 days), whereas free topotecan was rapidly cleared (t1/2 = 0.1 days) after CED. The favorable pharmacokinetic profile of extended topotecan release for about seven days, along with biodistribution featuring perivascular accumulation of the nanoparticles, provided, in addition to the known topoisomerase I inhibition, an effective antiangiogenic therapy. In the rat intracranial U87MG tumor model, vascular targeting of Ls-TPT with CED was associated with reductions in laminin expression and vascular density compared to free topotecan or control treatments. A single CED treatment on day 7 showed that free topotecan conferred no survival benefit versus control. However, Ls-TPT produced a significant (P = 0.0002) survival benefit, with six of seven complete cures. Larger U87MG tumors, where CED of Ls-TPT on day 12 resulted in one of six cures, indicated the necessity to cover the entire tumor with the infused therapeutic agent. CED of Ls-TPT was also efficacious in the intracranial U251MG tumor model (P = 0.0005 versus control). We conclude that the combination of a novel nanoparticle Ls-TPT and CED administration was very effective in treating experimental brain tumors.
AuthorsRyuta Saito, Michal T Krauze, Charles O Noble, Daryl C Drummond, Dmitri B Kirpotin, Mitchel S Berger, John W Park, Krystof S Bankiewicz
JournalNeuro-oncology (Neuro Oncol) Vol. 8 Issue 3 Pg. 205-14 (Jul 2006) ISSN: 1522-8517 [Print] England
PMID16723630 (Publication Type: Comparative Study, Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Liposomes
  • Topotecan
Topics
  • Animals
  • Brain Neoplasms (drug therapy, pathology)
  • Cell Line, Tumor
  • Convection
  • Dose-Response Relationship, Drug
  • Drug Delivery Systems (methods)
  • Glioma (drug therapy, pathology)
  • Humans
  • Liposomes
  • Male
  • Rats
  • Rats, Nude
  • Topotecan (administration & dosage)
  • Xenograft Model Antitumor Assays (methods)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: