HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Enzyme Sets of Glycolysis, Gluconeogenesis, and Oxidative Pentose Phosphate Pathway Are Not Complete in Nongreen Highly Purified Amyloplasts of Sycamore (Acer pseudoplatanus L.) Cell Suspension Cultures.

Abstract
Differential centrifugation and Percoll-gradient centrifugation of protoplast lysates of suspension-cultured cells of sycamore (Acer pseudoplatanus L.) yielded pure amyloplasts. Contamination of the final amyloplast preparation by foreign compartments was assessed by measuring marker enzyme activities. The activity of alkaline pyrophosphatase was taken as a 100% plastid marker; relative to this marker, mitochondria (cytochrome c oxidase) averaged 0.34%, microbodies (catalase) 0.61%, and cytosol (alcohol dehydrogenase) 0.09%. Enzymatic activities of the glycolytic, gluconeogenic, pentose phosphate and the starch degradation pathways were found to be present in these amyloplast extracts in appreciable amounts. But the pyrophosphate-dependent phosphofructokinase and phosphoglyceromutase were judged to be essentially absent from amyloplasts because the activities of these enzymes were not enriched above the level of contaminating enzymatic activities in the amyloplast fractions. Additionally, the in vitro activities of starch phosphorylase, ATP dependent phosphofructokinase, NAD dependent glyceraldehyde-3 phosphate dehydrogenase, and glucose-6 phosphate dehydrogenase did not seem to support carbon fluxes from starch to triose phosphates as calculated from the rate of starch disappearance during carbon starvation of the cells. These results provide additional, indirect evidence for the recently emerged view that, in addition to the well known phosphate-triosephosphate translocator, another hexose phosphate and possibly also an ATP/ADP translocating system play major roles in nongreen plastids.
AuthorsM Frehner, J Pozueta-Romero, T Akazawa
JournalPlant physiology (Plant Physiol) Vol. 94 Issue 2 Pg. 538-44 (Oct 1990) ISSN: 0032-0889 [Print] United States
PMID16667746 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: