HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Structure and multinuclear solid-state NMR of a highly birefringent lead-gold cyanide coordination polymer.

Abstract
The coordination polymer Pb(H2O)[Au(CN)2]2 (1) was synthesized by the reaction of KAu(CN)2 and Pb(NO3)2. The structure contains 1-D chains of lead(II)-OH2 linked via Au(CN)2(-) moieties, generating a 2-D slab; weak aurophilic interactions of 3.506(2) and 3.4885(5) A occur within and between slabs. The geometry about each lead(II) is bicapped trigonal prismatic, having six N-bound cyanides at the prism vertices and waters at two of the faces. Dehydration at 175 degrees C yields microcrystalline Pb[Au(CN)2]2 (2), which, along with 1, was examined by 13C, 15N, 1H, and 207Pb solid-state NMR methods. Two 15N resonances are assigned to the mu2-bridging and hydrogen-bonding cyanides in 1. Upon dehydration, the 207Pb NMR spectrum becomes axially symmetric and yields a reduced shielding span, indicating higher site symmetry, while the 13C and 15N spectra reveal a single cyanide. Although no single-crystal X-ray structure of 2 could be obtained, a structure is proposed on the basis of the NMR and X-ray powder data, consisting of a lead(II) center in a distorted square-prismatic environment, with cyanides present at each corner. The birefringence of single crystals of 1 is found to be 7.0 x 10(-2) at room temperature. This value is large compared to that of most optical materials and can be attributed to the anisotropy of the 2-D slabs of 1, with all CN bonds aligned in the same direction by the polarizable lead(II) center.
AuthorsMichael J Katz, Pedro M Aguiar, Raymond J Batchelor, Alexei A Bokov, Zuo-Guang Ye, Scott Kroeker, Daniel B Leznoff
JournalJournal of the American Chemical Society (J Am Chem Soc) Vol. 128 Issue 11 Pg. 3669-76 (Mar 22 2006) ISSN: 0002-7863 [Print] United States
PMID16536539 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: