HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Polymorphism and ultrastructural organization of prion protein amyloid fibrils: an insight from high resolution atomic force microscopy.

Abstract
Amyloid fibrils were produced from the full-length mouse prion protein (PrP) under solvent conditions similar to those used for the generation of synthetic prions from PrP 89-230. Analysis of the ultrastructure by atomic force microscopy revealed extremely broad polymorphism in fibrils formed under a single growth condition. Fibrils varied with respect to the number of constitutive filaments and the manner in which the filaments were assembled. PrP polymerization was found to show several peculiar features: (i) the higher-order fibrils/ribbons were formed through a highly hierarchical mechanism of assembly of lower-order fibrils/ribbons; (ii) the lateral assembly proceeded stepwise; at each step, a semi-stable fibrillar species were generated, which were then able to enter the next level of assembly; (iii) the assembly of lower into higher-order fibrils occurred predominantly in a vertical dimension via stacking of ribbons on top of each other; (iv) alternative modes of lateral association co-existed under a single growth condition; (iv) the fibrillar morphology changed even within individual fibrils, illustrating that alternative modes of filament assembly are inter-convertible and thermodynamically equivalent. The most predominant fibrillar types were classified into five groups according to their height, each of which was divided in up to three subgroups according to their width. Detailed analysis of ultrastructure revealed that the fibrils of the major subtype (height 3.61(+/-0.28)nm, width 31.1(+/-2.0)nm) were composed of two ribbons, each of which was composed of two filaments. The molecular volume calculations indicated that a single PrP molecule occupied a distance of approximately 1.2 nm within a single filament. High polymorphism in fibrils generated in vitro is reminiscent of high morphological diversity of scrapie-associated fibrils isolated from scrapie brains, suggesting that polymorphism is peculiar for polymerization of PrP regardless of whether fibrils are formed in vitro or under pathological conditions in vivo.
AuthorsMaighdlin Anderson, Olga V Bocharova, Natallia Makarava, Leonid Breydo, Vadim V Salnikov, Ilia V Baskakov
JournalJournal of molecular biology (J Mol Biol) Vol. 358 Issue 2 Pg. 580-96 (Apr 28 2006) ISSN: 0022-2836 [Print] Netherlands
PMID16519898 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • Amyloid
  • Prions
Topics
  • Amyloid (genetics, ultrastructure)
  • Animals
  • Mice
  • Microscopy, Atomic Force
  • Models, Molecular
  • Polymorphism, Genetic
  • Prions (genetics, ultrastructure)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: