HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer.

Abstract
Although cell invasion is a necessary early step in cancer metastasis, its regulation is not well understood. We have previously shown, in human prostate cancer, that transforming growth factor beta (TGFbeta)-mediated increases in cell invasion are dependent upon activation of the serine/threonine kinase, p38 MAP kinase. In the current study, downstream effectors of p38 MAP kinase were sought by first screening for proteins phosphorylated after TGFbeta treatment, only in the absence of chemical inhibitors of p38 MAP kinase. This led us to investigate mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2), a known substrate of p38 MAP kinase, as well as heat-shock protein 27 (HSP27), a known substrate of MAPKAPK2, in both PC3 and PC3-M human prostate cells. After transient transfection, wild-type MAPKAPK2 and HSP27 both increased TGFbeta-mediated matrix metalloproteinase type 2 (MMP-2) activity, as well as cell invasion, which in turn was inhibited by SB203580, an inhibitor of p38 MAP kinase. Conversely, dominant-negative MAPKAPK2 blocked phosphorylation of HSP27, whereas dominant-negative MAPKAPK2 or mutant, non-phosphorylateable, HSP27 each blocked TGFbeta-mediated increases in MMP-2, as well as cell invasion. Similarly, knock down of MAPKAPK2, HSP27 or both together, by siRNA, also blocked TGFbeta-mediated cell invasion. This study demonstrates that both MAPKAPK2 and HSP27 are necessary for TGFbeta-mediated increases in MMP-2 and cell invasion in human prostate cancer.
AuthorsL Xu, S Chen, R C Bergan
JournalOncogene (Oncogene) Vol. 25 Issue 21 Pg. 2987-98 (May 18 2006) ISSN: 0950-9232 [Print] England
PMID16407830 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • HSP27 Heat-Shock Proteins
  • HSPB1 protein, human
  • Heat-Shock Proteins
  • Imidazoles
  • Intracellular Signaling Peptides and Proteins
  • Molecular Chaperones
  • Neoplasm Proteins
  • Pyridines
  • RNA, Small Interfering
  • Recombinant Fusion Proteins
  • Transforming Growth Factor beta
  • Protein Kinases
  • MAP-kinase-activated kinase 2
  • Protein Serine-Threonine Kinases
  • p38 Mitogen-Activated Protein Kinases
  • Matrix Metalloproteinase 2
  • SB 203580
Topics
  • Adenocarcinoma (enzymology, pathology)
  • Cell Line, Tumor (drug effects, enzymology)
  • Enzyme Activation (drug effects)
  • HSP27 Heat-Shock Proteins
  • Heat-Shock Proteins (physiology)
  • Humans
  • Imidazoles (pharmacology)
  • Intracellular Signaling Peptides and Proteins
  • Male
  • Matrix Metalloproteinase 2 (metabolism)
  • Molecular Chaperones
  • Neoplasm Invasiveness
  • Neoplasm Proteins (physiology)
  • Prostatic Neoplasms (enzymology, pathology)
  • Protein Kinases (genetics, physiology)
  • Protein Serine-Threonine Kinases
  • Pyridines (pharmacology)
  • RNA Interference
  • RNA, Small Interfering (pharmacology)
  • Recombinant Fusion Proteins (physiology)
  • Signal Transduction (drug effects)
  • Transfection
  • Transforming Growth Factor beta (physiology)
  • p38 Mitogen-Activated Protein Kinases (antagonists & inhibitors, physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: