HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Room temperature and shock tube study of the reaction HCO+O2 using the photolysis of glyoxal as an efficient HCO source.

Abstract
The rate of the reaction 1, HCO+O2-->HO2+CO, has been determined (i) at room temperature using a slow flow reactor setup (20 mbar<p<500 mbar) and (ii) in the temperature range 739 K<T<1108 K behind reflected shock waves (0.82 bar<p<1.84 bar) employing a perturbation approach. Following the 193 nm excimer laser photolysis of mixtures of glyoxal in Ar, concentration-time profiles were measured using frequency modulation (FM) detection of HCO at a wavelength of lambda=614.752 nm. Observed differences between HCO concentration-time profiles measured with and without O2 added to the reaction mixtures could be almost exclusively attributed to reaction 1. The determined rate constants, k1(295 K)=(3.55+/-0.05)x10(12) cm3 mol-1 s-1, k1(739-1108 K)=3.7x10(13) exp(-13 kJ mol-1/RT) cm3 mol-1 s-1 (Delta log k1=+/-0.16), reveal a slightly positive temperature dependence of reaction 1 at high temperatures. Furthermore, the 193 nm photolysis of glyoxal, (CHO)2, has been proven to be an efficient HCO source. Besides HCO, photolysis of the precursor also produces H atoms. The ratio of initially generated H atoms and HCO radicals, f=[H]0/[HCO]0total, was found to depend on the total density rho. At room temperature, it varies from f=1.6 at rho=8x10(-7) mol cm-3 to f=3.0 at rho=2x10(-5) mol cm-3. H atoms are transformed via reaction 4, H+(CHO)2-->H2+HCO+CO, into additional HCO radicals. The rate constants of reaction 4 were determined from unperturbed photolysis experiments to be k4(295 K)=(3.6+/-0.3)x10(10) cm3 mol-1 s-1 and k4(769-1107 K)=5.4x10(13)exp(-18 kJ mol-1/RT) cm3 mol-1 s-1(Delta log k4=+/-0.12).
AuthorsM Colberg, G Friedrichs
JournalThe journal of physical chemistry. A (J Phys Chem A) Vol. 110 Issue 1 Pg. 160-70 (Jan 12 2006) ISSN: 1089-5639 [Print] United States
PMID16392851 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: