HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Structural effects of raloxifene on the proximal femur: results from the multiple outcomes of raloxifene evaluation trial.

AbstractINTRODUCTION:
Raloxifene improves spine bone mineral density (BMD), and its ability to reduce vertebral fractures by 40-50% suggests that it increases vertebral strength. Positive effects on hip BMD suggest a similar strengthening of the hip, but dimensional ambiguities in BMD by dual energy x-ray absorptiometry (DXA) make it difficult to infer strength effects directly. Hip fractures may be too infrequent to evaluate in practical clinical trials; even the Multiple Outcomes of Raloxifene Evaluation (MORE) study with 7,705 subjects was insufficiently powered to show a comparable reduction in hip fractures.
METHODS:
An alternative evaluation of hip DXA data in structural terms should provide more direct evidence of treatment effects on hip strength. Hip scans from a subset of the MORE study, including 4,806 postmenopausal women with osteoporosis randomized to daily oral doses of placebo, 60 mg, or 120 mg of raloxifene were reanalyzed by the hip structure analysis (HSA) method. Scans acquired at baseline, 1, 2, and 3 years were evaluated to extract BMD and cross-sectional geometry across the narrowest point on the neck (NN), the intertrochanteric region (IT), and the proximal shaft 1.5 times the minimum neck width distal to the intersection of the neck and shaft axes.
RESULTS:
While femur outer diameter expanded during follow-up at all three regions, there were no differences in expansion between groups; treatment influenced mainly the amount and distribution of bone within cross-sections. Effects were similar at the two dose levels at the NN region although the 120 mg dose produced a greater effect on section modulus (SM) at the IT region and on BMD, bone cross-sectional area (CSA), SM, average cortical thickness (CT), and buckling ratio (BR) at the shaft region. Compared with placebo after 3 years, treatment groups showed 0.4-2% higher BMD, CSA, SM, and CT and 1-2% lower BR. The smallest treatment effects were evident at the shaft at 60 mg.
CONCLUSIONS:
We conclude that raloxifene does not influence periosteal apposition in the proximal femur but it nevertheless produces small but significant improvement in resistance to axial and bending stresses (CSA and SM, respectively) at all analyzed regions. The significant reductions in buckling ratio suggest that additional strength loss due to cortical instability is also ameliorated by treatment.
AuthorsK Uusi-Rasi, T J Beck, L M Semanick, M M Daphtary, G G Crans, D Desaiah, K D Harper
JournalOsteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA (Osteoporos Int) Vol. 17 Issue 4 Pg. 575-86 ( 2006) ISSN: 0937-941X [Print] England
PMID16392026 (Publication Type: Journal Article, Randomized Controlled Trial, Research Support, Non-U.S. Gov't)
Chemical References
  • Bone Density Conservation Agents
  • Raloxifene Hydrochloride
Topics
  • Absorptiometry, Photon (methods)
  • Aged
  • Bone Density
  • Bone Density Conservation Agents (therapeutic use)
  • Female
  • Hip (diagnostic imaging, pathology)
  • Humans
  • Osteoporosis, Postmenopausal (drug therapy)
  • Prospective Studies
  • Raloxifene Hydrochloride (therapeutic use)
  • Treatment Outcome

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: