HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Inhibition of Werner syndrome helicase activity by benzo[a]pyrene diol epoxide adducts can be overcome by replication protein A.

Abstract
RecQ helicases are believed to function in repairing replication forks stalled by DNA damage and may also play a role in the intra-S-phase checkpoint, which delays the replication of damaged DNA, thus permitting repair to occur. Since little is known regarding the effects of DNA damage on RecQ helicases, and because the replication and recombination defects in Werner syndrome cells may reflect abnormal processing of damaged DNA associated with the replication fork, we examined the effects of specific bulky, covalent adducts at N(6) of deoxyadenosine (dA) or N(2) of deoxyguanosine (dG) on Werner (WRN) syndrome helicase activity. The adducts are derived from the optically active 7,8-diol 9,10-epoxide (DE) metabolites of the carcinogen benzo[a]pyrene (BaP). The results demonstrate that WRN helicase activity is inhibited in a strand-specific manner by BaP DE-dG adducts only when on the translocating strand. These adducts either occupy the minor groove without significant perturbation of DNA structure (trans adducts) or cause base displacement at the adduct site (cis adducts). In contrast, helicase activity is only mildly affected by intercalating BaP DE-dA adducts that locally perturb DNA double helical structure. This differs from our previous observation that intercalating dA adducts derived from benzo[c]phenanthrene (BcPh) DEs inhibit WRN activity in a strand- and stereospecific manner. Partial unwinding of the DNA helix at BaP DE-dA adduct sites may make such adducted DNAs more susceptible to the action of helicase than DNA containing the corresponding BcPh DE-dA adducts, which cause little or no destabilization of duplex DNA. The single-stranded DNA binding protein RPA, an auxiliary factor for WRN helicase, enabled the DNA unwinding enzyme to overcome inhibition by either the trans-R or cis-R BaP DE-dG adduct, suggesting that WRN and RPA may function together to unwind duplex DNA harboring specific covalent adducts that otherwise block WRN helicase acting alone.
AuthorsSaba Choudhary, Kevin M Doherty, Christopher J Handy, Jane M Sayer, Haruhiko Yagi, Donald M Jerina, Robert M Brosh Jr
JournalThe Journal of biological chemistry (J Biol Chem) Vol. 281 Issue 9 Pg. 6000-9 (Mar 03 2006) ISSN: 0021-9258 [Print] United States
PMID16380375 (Publication Type: Journal Article, Research Support, N.I.H., Intramural)
Chemical References
  • DNA Adducts
  • Deoxyadenosines
  • Dihydroxydihydrobenzopyrenes
  • Epoxy Compounds
  • Replication Protein A
  • DNA
  • Exodeoxyribonucleases
  • DNA Helicases
  • RecQ Helicases
  • WRN protein, human
  • Werner Syndrome Helicase
  • Deoxyguanosine
Topics
  • Animals
  • DNA (chemistry, metabolism)
  • DNA Adducts
  • DNA Damage
  • DNA Helicases (antagonists & inhibitors, metabolism)
  • DNA Replication
  • Deoxyadenosines (chemistry, metabolism)
  • Deoxyguanosine (chemistry, metabolism)
  • Dihydroxydihydrobenzopyrenes (chemistry, metabolism)
  • Epoxy Compounds (chemistry, metabolism)
  • Exodeoxyribonucleases
  • Molecular Structure
  • Nucleic Acid Conformation
  • RecQ Helicases
  • Replication Protein A (metabolism)
  • Werner Syndrome Helicase

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: