HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa: cloning, over-expression in Escherichia coli, and regulation by choline and salt.

Abstract
In the human pathogen Pseudomonas aeruginosa, betaine aldehyde dehydrogenase (BADH) may play a dual role assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine, which protects the bacteria against the high-osmolarity stress prevalent in the infected tissues. We cloned the P. aeruginosa BADH gene and expressed the BADH protein in Escherichia coli. The recombinant protein appears identical to its native counterpart, as judged by Western blot, N-terminal amino acid sequence, tryptophan-fluorescence emission spectra, circular-dichroism spectroscopy, size-exclusion chromatography, and kinetic properties. Computational analysis indicated that the promoter sequence of the putative operon that includes the BADH gene has a consensus-binding site for the choline-sensing transcription repressor BetI, and putative boxes for ArcA and Lrp transcription factors but no known elements of response to osmotic stress. This is consistent with the strong induction of BADH expression by choline and with the lack of effect of NaCl. As there were significant amounts of BADH protein and activity in P. aeruginosa cells grown on glucose plus choline, as well as the BADH activity exhibiting tolerance to salt, it is likely that glycine betaine is synthesized in vivo and could play an important osmoprotectant role under conditions of infection.
AuthorsRoberto Velasco-García, Miguel Angel Villalobos, Miguel A Ramírez-Romero, Carlos Mújica-Jiménez, Gabriel Iturriaga, Rosario A Muñoz-Clares
JournalArchives of microbiology (Arch Microbiol) Vol. 185 Issue 1 Pg. 14-22 (Mar 2006) ISSN: 0302-8933 [Print] Germany
PMID16315011 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Recombinant Proteins
  • Sodium Chloride
  • Betaine-Aldehyde Dehydrogenase
  • Glucose
  • Choline
Topics
  • Base Sequence
  • Betaine-Aldehyde Dehydrogenase (biosynthesis, genetics, metabolism)
  • Choline (genetics, metabolism)
  • Escherichia coli (enzymology, genetics)
  • Glucose (genetics, metabolism)
  • Molecular Biology
  • Molecular Sequence Data
  • Pseudomonas aeruginosa (enzymology, genetics)
  • Recombinant Proteins (biosynthesis, genetics)
  • Sodium Chloride (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: