HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response.

Abstract
Nondiapausing larvae of the flesh fly, Sarcophaga bullata, responded to several forms of short-term environmental stress (low temperature, anoxia and desiccation) by accumulating glycerol. Elevation of this polyol, regardless of the type of stress that induced accumulation, conferred cold resistance: larvae with high glycerol levels were 3-4 times more tolerant of a 2h exposure to -10 degrees C than unstressed larvae. Protection against low temperature injury, as well as dehydration, was also attained by injection of exogenous glycerol into third instar larvae. This artificially induced cold hardiness was only temporary: when glycerol-injected larvae were exposed to -10 degrees C immediately after injection, survival was high, but none survived if they were injected and then held at 25 degrees C for 2 days before the -10 degrees C exposure. Larvae ligated behind the brain immediately after low temperature exposure failed to accumulate glycerol, but glycerol did accumulate in larvae ligated 6-24h after cold treatment, thus implying a critical role for the brain in initiating glycerol production. Interestingly, a much shorter exposure (2h) to low temperature was sufficient to reduce the maximum rate of water loss. Collectively, these observations suggest that multiple pathways may be exploited in response to stress: one pathway is most likely associated with rapid cold hardening (RCH) which generates immediate protection, and a second pathway remains activated for a longer period to enhance the initial protection afforded by glycerol.
AuthorsJay A Yoder, Joshua B Benoit, David L Denlinger, David B Rivers
JournalJournal of insect physiology (J Insect Physiol) Vol. 52 Issue 2 Pg. 202-14 (Feb 2006) ISSN: 0022-1910 [Print] England
PMID16290823 (Publication Type: Journal Article, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Trehalose
  • Glycerol
Topics
  • Animals
  • Cold Temperature
  • Dehydration
  • Diptera (metabolism, physiology)
  • Glycerol (metabolism, pharmacology)
  • Hot Temperature
  • Hypoxia
  • Stress, Physiological
  • Trehalose (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: