HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Preserved placental oxygenation and development during severe systemic hypoxia.

Abstract
Local tissue oxygenation profoundly influences placental development. To elucidate the impact of hypoxia on cellular and molecular adaptation in vivo, pregnant mice at embryonic days 7.5-11.5 were exposed to reduced environmental oxygen (6-7% O2) for various periods of time. Hypoxia-inducible factor (HIF)-1alpha mRNA was highly expressed in the placenta, whereas HIF-2alpha was predominantly found in the decidua, indicating that HIF-1 is a relevant oxygen-dependent factor involved in placental development. During severe hypoxia, HIF-1alpha protein was strongly induced in the periphery but, however, not in the labyrinth layer of the placenta. Accordingly, no indication for tissue hypoxia in this central area was detected with 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide staining and VEGF expression as hypoxic markers. The absence of significant tissue hypoxia was reflected by preserved placental architecture and trophoblast differentiation. In the search for mechanisms preventing local hypoxia, we found upregulation of endothelial nitric oxide synthase (NOS) expression in the labyrinth layer. Inhibition of NOS activity by N(omega)-nitro-L-arginine methyl ester application resulted in ubiquitous placental tissue hypoxia. Our results show that placental oxygenation is preserved even during severe systemic hypoxia and imply that NOS-mediated mechanisms are involved to protect the placenta from maternal hypoxia.
AuthorsLeonhard Schäffer, Johannes Vogel, Christian Breymann, Max Gassmann, Hugo H Marti
JournalAmerican journal of physiology. Regulatory, integrative and comparative physiology (Am J Physiol Regul Integr Comp Physiol) Vol. 290 Issue 3 Pg. R844-51 (Mar 2006) ISSN: 0363-6119 [Print] United States
PMID16195499 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Hypoxia-Inducible Factor 1
  • Oxygen
Topics
  • Animals
  • Female
  • Hypoxia (metabolism, pathology)
  • Hypoxia-Inducible Factor 1 (metabolism)
  • Mice
  • Oxygen (metabolism)
  • Placenta (metabolism, pathology)
  • Pregnancy
  • Tissue Distribution

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: