HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Lipoprotein-associated phospholipase A2 as a target of therapy.

AbstractPURPOSE OF REVIEW:
Considerable discussion continues regarding the precise role that secreted lipoprotein-associated phospholipase A2 (Lp-PLA2), also called platelet-activating factor acetylhydrolase, plays in atherosclerosis. Since interest in this enzyme as a putative drug target has been based primarily upon its association with low-density lipoprotein (LDL) in human plasma, this review will focus on Lp-PLA2 and human coronary heart disease.
RECENT FINDINGS:
Recent reports have linked Lp-PLA2 enrichment not only to the most atherogenic of LDL particles but also to the most advanced, rupture-prone, plaques. Electronegative LDL has been shown to be highly enriched in Lp-PLA2; and in advanced atheroma, Lp-PLA2 levels are highly upregulated, colocalizing with macrophages in both the necrotic core and fibrous cap. Lp-PLA2 is well placed, whether on an oxidation susceptible LDL particle or in the highly oxidative environment of an advanced rupture-prone plaque, to hydrolyse oxidized phospholipid and generate significant quantities of the two pro-inflammatory mediators, lysophosphatidylcholine and oxidized nonesterified fatty acid. Several studies have confirmed that Lp-PLA2 is an independent risk factor for cardiovascular events (i.e. myocardial infarction and stroke). Although epidemiology studies consistently support a relationship between plasma Lp-PLA2 levels and susceptibility to coronary heart disease this is not the case for Lp-PLA2 polymorphisms. Two clinical studies have linked the Ala-379-->Val polymorphism with a reduced risk of myocardial infarction, but functional differences between the AA and VV polymorphs have yet to be demonstrated.
SUMMARY:
Lp-PLA2 is intimately associated with several aspects of human atherogenesis. Although various lipid-lowering therapies, such as statins, have been shown to reduce plasma levels of Lp-PLA2, none has been studied in terms of its ability to lower the large macrophage-mediated upregulation of Lp-PLA2 within advanced plaques.
AuthorsColin H Macphee, Jeanenne J Nelson, Andrew Zalewski
JournalCurrent opinion in lipidology (Curr Opin Lipidol) Vol. 16 Issue 4 Pg. 442-6 (Aug 2005) ISSN: 0957-9672 [Print] England
PMID15990594 (Publication Type: Journal Article, Review)
Chemical References
  • Lovastatin
  • Phospholipases A
  • Phospholipases A2
  • 1-Alkyl-2-acetylglycerophosphocholine Esterase
Topics
  • 1-Alkyl-2-acetylglycerophosphocholine Esterase
  • Cardiovascular Diseases (drug therapy, enzymology, etiology)
  • Humans
  • Lovastatin (therapeutic use)
  • Macrophages (enzymology)
  • Phospholipases A (antagonists & inhibitors, genetics, metabolism)
  • Phospholipases A2

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: