HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Phosphorylation of ribavirin and viramidine by adenosine kinase and cytosolic 5'-nucleotidase II: Implications for ribavirin metabolism in erythrocytes.

Abstract
Many nucleoside analog drugs, such as ribavirin and viramidine, are activated or metabolized in vivo through 5'-phosphorylation. In this report, we determined the steady-state kinetic parameters for 5'-monophosphorylation of ribavirin and viramidine by adenosine kinase. The apparent Km for ribavirin is 540 microM, and k(cat) is 1.8 min-1. Its catalytic efficiency of 3.3 x 10(-3) min-1 . microM-1 is 1,200-fold lower than that of adenosine. In contrast to the common belief that ribavirin is exclusively phosphorylated by adenosine kinase, cytosolic 5'-nucleotidase II was found to catalyze ribavirin phosphorylation in vitro. The reaction is optimally stimulated by the physiological concentration of ATP or 2,3-bisphosphoglycerate. In phosphate-buffered saline plus ATP and 2,3-bisphosphoglycerate, the apparent Km for ribavirin is 88 microM, and k(cat) is 4.0 min-1. These findings suggest that cytosolic 5'-nucleotidase II may be involved in ribavirin phosphorylation in vivo. Like ribavirin, viramidine was found to be phosphorylated by either adenosine kinase or cytosolic 5'-nucleotidase II, albeit with a much lower activity. The catalytic efficiency for viramidine phosphorylation is 10- to 330-fold lower than that of ribavirin, suggesting that other nucleoside kinase(s) may be involved in viramidine phosphorylation in vivo. Both ribavirin and viramidine are not phosphorylated by deoxycytidine kinase and uridine-cytidine kinase. The coincidence of presence of high concentrated 2,3-bisphosphoglycerate in erythrocytes suggests that cytosolic 5'-nucleotidase II could play an important role in phosphorylating ribavirin and contribute to anabolism of ribavirin triphosphate in erythrocytes. Elucidation of ribavirin and viramidine phosphorylation mechanism should shed light on their in vivo metabolism, especially the ribavirin-induced hemolytic anemia in erythrocytes.
AuthorsJim Zhen Wu, Gary Larson, Heli Walker, Jae Hoon Shim, Zhi Hong
JournalAntimicrobial agents and chemotherapy (Antimicrob Agents Chemother) Vol. 49 Issue 6 Pg. 2164-71 (Jun 2005) ISSN: 0066-4804 [Print] United States
PMID15917509 (Publication Type: Journal Article)
Chemical References
  • Antiviral Agents
  • Ribavirin
  • Adenosine Kinase
  • 5'-Nucleotidase
  • taribavirin
Topics
  • 5'-Nucleotidase (metabolism)
  • Adenosine Kinase (metabolism)
  • Animals
  • Antiviral Agents (metabolism)
  • Cricetinae
  • Cytosol (enzymology)
  • Erythrocytes (metabolism)
  • Humans
  • Kinetics
  • Phosphorylation
  • Ribavirin (analogs & derivatives, chemistry, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: