DNA recognition properties of the LHX3b LIM homeodomain transcription factor.

LHX3 is a LIM homeodomain transcription factor with established roles in pituitary and nervous system development. Mutations in the human LHX3 gene are associated with severe hormone deficiency diseases. Previous studies have shown that the human LHX3 gene produces at least three protein isoforms: LHX3a, LHX3b, and M2-LHX3. In gene activation assays, LHX3a and M2-LHX3 are significantly more active than LHX3b because the actions of LHX3b are repressed by an inhibitory domain in its amino terminus. In this report, we investigate the molecular characteristics that result in reduced transcriptional capacity of LHX3b by determining the optimal DNA binding preference of LHX3b. Site selection experiments using purified human LHX3b reveal that it selects AT-rich sequences that contain ATTA/TAAT motifs. The pool of sequences selected by LHX3b is similar to that selected by LHX3a but does not conform to as strict a consensus. Further, the LHX3b-selected sites are bound more avidly by LHX3a and M2-LHX3 suggesting that LHX3b does not act by recognizing LHX3b-specific binding sites in target genes. We conclude that the amino terminal repression domain of LHX3b mostly acts to reduce the transcriptional potency of LHX3 by inhibiting the DNA binding affinity of the homeodomain, with some reduction in DNA binding specificity.
AuthorsBenjamin C Yaden, Jesse J Savage, Chad S Hunter, Simon J Rhodes
JournalMolecular biology reports (Mol Biol Rep) Vol. 32 Issue 1 Pg. 1-6 (Mar 2005) ISSN: 0301-4851 [Print] Netherlands
PMID15865204 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Homeodomain Proteins
  • LIM-Homeodomain Proteins
  • Lhx3 protein
  • Protein Isoforms
  • Transcription Factors
  • DNA
  • Luciferases
  • DNA (chemistry, metabolism)
  • Gene Expression Regulation
  • Genes, Reporter (genetics)
  • Homeodomain Proteins (genetics, metabolism)
  • Humans
  • LIM-Homeodomain Proteins
  • Luciferases (analysis, genetics)
  • Protein Isoforms (metabolism)
  • Protein Structure, Tertiary
  • Transcription Factors (genetics, metabolism)
  • Transcriptional Activation

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research network!

Choose Username:
Verify Password: