HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

AMPA receptor antagonists for the treatment of stroke.

Abstract
Signal transduction via ionotropic glutamate receptors is found in many life forms, from protozoa to mammals. Glutamate is the main excitatory neurotransmitter in the mammalian CNS, were fast postsynaptic depolarisation is induced by the activation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors. In addition to their important physiological role, excessive AMPA receptor stimulation is also a hallmark of excitotoxicity-related diseases, like ischaemic stroke. Conversely, AMPA receptor inhibitors were proposed to be useful neuroprotective drugs. First generation AMPA receptor blockers were competitive antagonists, like NBQX, which showed robust neuroprotection in a variety of disease-related animal models. Its clinical use, however, was restricted by the very low solubility, inducing kidney precipitaton in vivo. Second generation competitive antagonists are available, which do not possess this property. None of those, however, up to now is in clinical use. Competitive AMPA receptor antagonists are not the first choice for neuroprotective drugs, since due to receptor kinetics they preferently suppress the physiological relevant component of the postsynaptic glutamate response. Non-competitive blockers, like 2,3-benzodiazepines or the novel neuroprotectant BIIR 561 should be suited better for the treatment of stroke. The latter compound is also described as blocker of voltage-gated sodium channels. Targetting more than one mechanism in the excitotoxicity cascade might be a fruitful approach for the development of neuroprotective drugs.
AuthorsThomas Weiser
JournalCurrent drug targets. CNS and neurological disorders (Curr Drug Targets CNS Neurol Disord) Vol. 4 Issue 2 Pg. 153-9 (Apr 2005) ISSN: 1568-007X [Print] Netherlands
PMID15857300 (Publication Type: Journal Article, Review)
Chemical References
  • Excitatory Amino Acid Antagonists
  • Neuroprotective Agents
  • Receptors, AMPA
  • Glutamic Acid
Topics
  • Animals
  • Excitatory Amino Acid Antagonists (pharmacology, therapeutic use)
  • Glutamic Acid (physiology)
  • Humans
  • Mice
  • Neuroprotective Agents (pharmacology, therapeutic use)
  • Receptors, AMPA (antagonists & inhibitors, physiology)
  • Stroke (drug therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: