HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Short term in vivo biocompatibility testing of biodegradable poly(D,L-lactide)--growth factor coating for orthopaedic implants.

Abstract
Fracture healing can be stimulated by exogenous application of growth factors. Using porcine and rat models the efficacy of locally delivered IGF-I and TGF-beta1 from an implant coating has been demonstrated. A thin and biomechanical stable biodegradable poly(D,L-lactide) was used to coat implants and serve as a drug carrier. Due to reports of possible foreign body reactions caused by polymer materials in orthopedic surgery, this study investigated the biocompatibility of the polylactide implant coating and the locally released growth factors during the time course of rat tibial fracture healing (days 5, 10, 15, and 28 after fracture). Monocytes/macrophages and osteoclast were detected using an monoclonal antibody against ED1 (comparable to CD68 in mice and human). The antibody ED1 stains monocytes, macrophages and osteoclast in the bone marrow and in the newly formed fracture callus. A moderate density of the monocytes/macrophages was seen in the proximal part of the medullary canal, but almost no cells were detectable in the region distal to the fracture. The amount of stained cells increased during the observation time with a maximum at days 10 and 15 followed by a decrease at day 28. No differences were detectable between the investigated groups from day 5 to 15 post fracture indicating, that the used poly(D,L-lactide) or the incorporated growth factors do not evoke an elevated immunological response compared to the uncoated titanium implant at the investigated time points. A significantly higher amount of ED1 positive cells was measured 28 days after fracture in the control group compared to the groups with the coated implants. In conclusion, no indication of a foreign body reaction due to the use of the polylactide or the growth factors was found indicating a good short-term biocompatibility of this bioactive coating.
AuthorsBritt Wildemann, Andre Sander, Philipp Schwabe, Martin Lucke, Ulrich Stöckle, Michael Raschke, Norbert P Haas, Gerhard Schmidmaier
JournalBiomaterials (Biomaterials) Vol. 26 Issue 18 Pg. 4035-40 (Jun 2005) ISSN: 0142-9612 [Print] Netherlands
PMID15626449 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Coated Materials, Biocompatible
  • Drug Implants
  • Polyesters
  • TGFB1 protein, human
  • Tgfb1 protein, rat
  • Transforming Growth Factor beta
  • Transforming Growth Factor beta1
  • poly(lactide)
  • Insulin-Like Growth Factor I
Topics
  • Absorbable Implants
  • Animals
  • Coated Materials, Biocompatible (administration & dosage, chemistry)
  • Drug Implants (administration & dosage, chemistry)
  • Female
  • Fracture Healing (drug effects)
  • Insulin-Like Growth Factor I (administration & dosage, chemistry)
  • Materials Testing
  • Polyesters (chemistry)
  • Rats
  • Rats, Sprague-Dawley
  • Swine
  • Tibial Fractures (drug therapy, pathology)
  • Transforming Growth Factor beta (administration & dosage, chemistry)
  • Transforming Growth Factor beta1
  • Treatment Outcome

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: