HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Substitution reactions of [Pt(terpy)X]2+ with some biologically relevant ligands. Synthesis and crystal structure of [Pt(terpy)(cyst-S)](ClO4)2.0.5H2O and [Pt(terpy)(guo-N7)](ClO4)2.0.5guo.1.5H2O.

Abstract
Substitution reactions of the complexes [Pt(terpy)(H(2)O)](2+), [Pt(terpy)(cyst-S)](2+) and [Pt(terpy)(guo-N(7))](2+), where terpy = 2,2':6',2"-terpyridine, cyst = L-cysteine and guo = guanosine, with some biologically relevant ligands such as inosine (INO), inosine-5'-monophosphate (5'-IMP), guanosine-5'-monophosphate (5'-GMP), l-cysteine, glutathione, thiourea, thiosulfate and diethyldithiocarbamate (DEDTC), were studied in aqueous 0.10 M NaClO(4) at pH 2.5 and 6.0 using variable-temperature and -pressure stopped-flow spectrophotometry. The reactions of [Pt(terpy)(H(2)O)](2+) with INO, 5'-IMP and 5'-GMP showed that these ligands are very good nucleophiles. The second order rate constants varied between 4 x 10(2) and 6 x 10(2) M(-1) s(-1) at 25 degree C. The [Pt(terpy)(cyst-S)](2+) complex is unreactive towards nitrogen donor nucleophiles, and cysteine cannot be replaced by N(7) from INO, 5'-IMP and 5'-GMP. However, sulfur donor nucleophiles such as thiourea, thiosulfate and diethyldithiocarbamate could displace the Pt-cysteine bond. Diethyldithiocarbamate is the best nucleophile and the order of reactivity is: thiourea < thiosulfate < DEDTC with rate constants of 0.936 +/- 0.002, 5.99 +/- 0.02 and 8.88 +/- 0.07 M(-1) s(-1) at 25 degree C, respectively. The reactions of [Pt(terpy)(guo-N(7))](2+) with sulfur donor ligands showed that these nucleophiles could substitute guanosine from the Pt(ii) complex, of which diethyldithiocarbamate and thiosulfate are the strongest nucleophiles. The tripeptide glutathione is also a very efficient nucleophile. Activation parameters (Delta H(++), Delta S(++) and Delta V(++)) were determined for all reactions. The crystal structures of [Pt(terpy)(cyst-S)](ClO(4))(2).0.5H(2)O and [Pt(terpy)(guo-N(7))](ClO(4))(2).0.5guo.1.5H(2)O were determined by X-ray diffraction. Crystals of [Pt(terpy)(cyst-S)](ClO(4))(2).0.5H(2)O are orthorhombic with the space group P2(1)2(1)2(1), whereas [Pt(terpy)(guo-N(7))](ClO(4))(2).0.5guo.1.5H(2)O crystallizes in the orthorhombic space group P2(1)2(1)2. A typical feature of terpyridine complexes can be found in both molecular structures: the Pt-N (central) bond distance, 1.982(7) and 1.92(2) A, respectively, is shorter than the other two Pt-N distances, being 2.043(7) and 2.034(7) A in [Pt(terpy)(cyst-S)](ClO(4))(2).0.5H(2)O and 2.03(2) and 2.04(2) A in [Pt(terpy)(guo-N(7))](ClO(4))(2).0.5guo.1.5H(2)O, respectively. In both crystal structures two symmetrically independent cations representing different conformers are present in the asymmetric unit. The results are analysed in reference to the antitumour activity of Pt(II) complexes, and the importance of the rescue agents are discussed.
AuthorsZivadin D Bugarcic, Frank W Heinemann, Rudi van Eldik
JournalDalton transactions (Cambridge, England : 2003) (Dalton Trans) Issue 2 Pg. 279-86 (Jan 21 2004) ISSN: 1477-9226 [Print] England
PMID15356724 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: