HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Fungicide activity through activation of a fungal signalling pathway.

Abstract
Fungicides generally inhibit enzymatic reactions involved in fungal cellular biosynthesis. Here we report, for the first time, an example of fungicidal effects through hyperactivation of a fungal signal transduction pathway. The OSC1 gene, encoding a MAP kinase (MAPK) related to yeast Hog1, was isolated from the fungal pathogen Colletotrichum lagenarium that causes cucumber anthracnose. The osc1 knockout mutants were sensitive to high osmotic stress and showed increased resistance to the fungicide fludioxonil, indicating that Osc1 is involved in responses to hyperosmotic stress and sensitivity to fludioxonil. The Osc1 MAPK is phosphorylated under high osmotic conditions, indicating activation of Osc1 by high osmotic stress. Importantly, fludioxonil treatment also activates phosphorylation of Osc1, suggesting that improper activation of Osc1 by fludioxonil has negative effects on fungal growth. In the presence of fludioxonil, the wild-type fungus was not able to infect the host plant because of a failure of appressorium-mediated penetration, whereas osc1 mutants successfully infected plants. Analysis using a OSC1-GFP fusion gene indicated that Osc1 is rapidly translocated to the nucleus in appressorial cells after the addition of fludioxonil, suggesting that fludioxonil impairs the function of infection structures by activation of Osc1. Furthermore, fludioxonil activates Hog1-type MAPKs in the plant pathogenic fungi Cochliobolus heterostrophus and Botrytis cinerea. These results strongly suggest that fludioxonil acts as a fungicide, in part, through activation of the MAPK cascade in fungal pathogens.
AuthorsKaihei Kojima, Yoshitaka Takano, Akira Yoshimi, Chihiro Tanaka, Taisei Kikuchi, Tetsuro Okuno
JournalMolecular microbiology (Mol Microbiol) Vol. 53 Issue 6 Pg. 1785-96 (Sep 2004) ISSN: 0950-382X [Print] England
PMID15341655 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antifungal Agents
  • Dioxoles
  • Fungal Proteins
  • Pyrroles
  • Recombinant Fusion Proteins
  • Saccharomyces cerevisiae Proteins
  • HOG1 protein, S cerevisiae
  • Mitogen-Activated Protein Kinases
  • fludioxonil
Topics
  • Amino Acid Sequence
  • Antifungal Agents (pharmacology)
  • Colletotrichum (drug effects, enzymology, physiology, ultrastructure)
  • Cucumis sativus (anatomy & histology, microbiology)
  • Dioxoles (pharmacology)
  • Enzyme Activation
  • Fungal Proteins (genetics, metabolism)
  • Mitogen-Activated Protein Kinases (genetics, metabolism)
  • Molecular Sequence Data
  • Osmotic Pressure
  • Plant Diseases (microbiology)
  • Plant Leaves (microbiology)
  • Pyrroles (pharmacology)
  • Recombinant Fusion Proteins (genetics, metabolism)
  • Saccharomyces cerevisiae Proteins (genetics, metabolism)
  • Sequence Alignment
  • Signal Transduction (physiology)
  • Water-Electrolyte Balance

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: