HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Lipid peroxidation and cataracts: N-acetylcarnosine as a therapeutic tool to manage age-related cataracts in human and in canine eyes.

Abstract
Cataract formation represents a serious problem in the elderly, with approximately 25% of the population aged >65 years and about 50% aged >80 years experiencing a serious loss of vision as a result of this condition. Not only do cataracts diminish quality of life, they also impose a severe strain on global healthcare budgets. In the US, 43% of all visits to ophthalmologists by Medicare patients are associated with cataract. Surgery represents the standard treatment of this condition, and 1.35 million cataract operations are performed annually in the US, costing 3.5 billion US dollars (year of costing, 1998). Unfortunately, the costs of surgical treatment and the fact that the number of patients exceeds surgical capacities result in many patients being blinded by cataracts worldwide. This situation is particularly serious in developing countries; worldwide 17 million people are blind because of cataract formation, and the problem will grow in parallel with aging of the population. In any event, surgical removal of cataracts may not represent the optimal solution. Although generally recognised as being one of the safest operations, there is a significant complication rate associated with this surgical procedure. Opacification of the posterior lens capsule occurs in 30-50% of patients within 2 years of cataract removal and requires laser treatment, a further 0.8% experience retinal detachments, approximately 1% are rehospitalised for corneal problems, and about 0.1% develop endophthalmitis. Although the risks are small, the large number of procedures performed means that 26,000 individuals develop serious complications as a result of cataract surgery annually in the US alone. Thus, risk and cost factors drive the investigation of pharmaceutical approaches to the maintenance of lens transparency. The role of free radical-induced lipid oxidation in the development of cataracts has been identified. Initial stages of cataract are characterised by the accumulation of primary (diene conjugates, cetodienes) lipid peroxidation (LPO) products, while in later stages there is a prevalence of LPO fluorescent end-products. A reliable increase in oxiproducts of fatty acyl content of lenticular lipids was shown by a direct gas chromatography technique producing fatty acid fluorine-substituted derivatives. The lens opacity degree correlates with the level of the LPO fluorescent end-product accumulation in its tissue, accompanied by sulfhydryl group oxidation of lens proteins due to a decrease of reduced glutathione concentration in the lens. The injection of LPO products into the vitreous has been shown to induce cataract. It is concluded that peroxide damage of the lens fibre membranes may be the initial cause of cataract development. N-acetylcarnosine (as the ophthalmic drug Can-C), has been found to be suitable for the nonsurgical prevention and treatment of age-related cataracts. This molecule protects the crystalline lens from oxidative stress-induced damage, and in a recent clinical trial it was shown to produce an effective, safe and long-term improvement in sight. When administered topically to the eye in the form of Can-C, N-acetylcarnosine functions as a time-release prodrug form of L-carnosine resistant to hydrolysis with carnosinase. N-acetylcarnosine has potential as an in vivo universal antioxidant because of its ability to protect against oxidative stress in the lipid phase of biological cellular membranes and in the aqueous environment by a gradual intraocular turnover into L-carnosine. In our study the clinical effects of a topical solution of N-acetylcarnosine (Can-C) on lens opacities were examined in patients with cataracts and in canines with age-related cataracts. These data showed that N-acetylcarnosine is effective in the management of age-related cataract reversal and prevention both in human and in canine eyes.
AuthorsMark A Babizhayev, Anatoly I Deyev, Valentina N Yermakova, Igor V Brikman, Johan Bours
JournalDrugs in R&D (Drugs R D) Vol. 5 Issue 3 Pg. 125-39 ( 2004) ISSN: 1174-5886 [Print] New Zealand
PMID15139774 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
Chemical References
  • N-acetylcarnosine
  • Carnosine
Topics
  • Aging
  • Animals
  • Carnosine (analogs & derivatives, therapeutic use)
  • Cataract (drug therapy, metabolism, physiopathology, veterinary)
  • Dog Diseases (drug therapy, metabolism, physiopathology)
  • Dogs
  • Humans
  • Lipid Peroxidation (drug effects, physiology)
  • Randomized Controlled Trials as Topic

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: