HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Selective retroinfusion of GSH and cariporide attenuates myocardial ischemia-reperfusion injury in a preclinical pig model.

AbstractOBJECTIVE:
Reperfusion after ischemia may contribute to loss of myocardial function and increase in infarct size. Scavenging of reactive oxygen species (ROS) by glutathione (GSH) and inhibition of the sodium-proton-exchanger by cariporide are both capable of reducing myocardial reperfusion injury. We tested the efficacy of both agents applied regionally into the myocardium immediately before reperfusion.
METHODS:
Neonatal rat cardiomyocytes (NRCMs) were exposed to either hypoxia (H, 8 h)/reoxygenation (R, 1 h) or H2O2 (300 microM) in the presence or absence of GSH (10 mg/ml). In pigs (n=5 per group), percutaneous LAD occlusion was performed for 60 min. Application of GSH (250 mg/kg) and/or cariporide (1 mg/kg) was achieved by pressure-regulated retroinfusion of the anterior cardiac vein draining the ischemic area starting 5 min before reopening of the occluded LAD. Seven days later, subendocardial segment shortening (SES) was analyzed by sonomicrometry. Infarct size was determined by methylene-blue staining of the non-ischemic area and tetrazolium red staining of the viable myocardium in the area at risk (AAR).
RESULTS:
NRCM incubated with GSH (10 mg/ml) survived H/R or H2O2 (0.3 mM) to a larger extent than untreated cells. In pigs, infarct size of untreated hearts (51 +/- 6% of the AAR) was not significantly altered by GSH or cariporide retroinfusion alone (41 +/- 3% and 42 +/- 6%). In contrast, combined retroinfusion of cariporide and GSH significantly reduced infarct size (29 +/- 3%). SES of the infarcted area was improved only after cariporide/GSH retroinfusion as compared to untreated hearts. Additional systemic application of CD18-antibody IB4 (1.5 mg/kg) did not alter infarct size or SES in comparison to GSH/cariporide retroinfusion alone.
CONCLUSION:
Timely application of GSH scavenging ROS and cariporide targeting ion imbalance provides cardioprotection to the postischemic heart, which is superior to either treatment alone. The lack of an effect of additional IB4 treatment may indicate that GSH/cariporide retroinfusion itself affects leukocyte-dependent reperfusion injury.
AuthorsChristian Kupatt, Rabea Hinkel, Jan Horstkotte, Michael Deiss, Marie-Luise von Brühl, Manfred Bilzer, Peter Boekstegers
JournalCardiovascular research (Cardiovasc Res) Vol. 61 Issue 3 Pg. 530-7 (Feb 15 2004) ISSN: 0008-6363 [Print] England
PMID14962483 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Anti-Arrhythmia Agents
  • Free Radical Scavengers
  • Guanidines
  • Sulfones
  • cariporide
  • Glutathione
Topics
  • Animals
  • Anti-Arrhythmia Agents (therapeutic use)
  • Free Radical Scavengers (therapeutic use)
  • Glutathione (therapeutic use)
  • Guanidines (therapeutic use)
  • Models, Animal
  • Myocardial Infarction (metabolism)
  • Myocardial Reperfusion Injury (drug therapy, metabolism)
  • Myocardium (metabolism)
  • Myocytes, Cardiac (metabolism)
  • Rats
  • Rats, Wistar
  • Sulfones (therapeutic use)
  • Swine

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: