HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model.

Abstract
Examination of the clinical therapeutic efficacy of using bone marrow stromal cells, including mesenchymal stem cells (MSC), has recently been the focus of much investigation. MSC were reported to ameliorate functional deficits after stroke in rats, with some of this improvement possibly resulting from the action of cytokines secreted by these cells. To enhance such cytokine effects, we transfected telomerized human MSC with the BDNF gene using a fiber-mutant F/RGD adenovirus vector and investigated whether these cells contributed to improved functional recovery in a rat transient middle cerebral artery occlusion (MCAO) model. BDNF production by MSC-BDNF cells was 23-fold greater than that seen in uninfected MSC. Rats that received MSC-BDNF showed significantly more functional recovery than did control rats following MCAO. Specifically, MRI analysis revealed that the rats in the MSC-BDNF group exhibited more significant recovery from ischemia after 7 and 14 days. The number of TUNEL-positive cells in the ischemic boundary zone was significantly smaller in animals treated with MSC-BDNF compared to animals in the control group. These data suggest that MSC transfected with the BDNF gene may be useful in the treatment of cerebral ischemia and may represent a new strategy for the treatment of stroke.
AuthorsKazuhiko Kurozumi, Kiminori Nakamura, Takashi Tamiya, Yutaka Kawano, Masayoshi Kobune, Sachie Hirai, Hiroaki Uchida, Katsunori Sasaki, Yoshinori Ito, Kazunori Kato, Osamu Honmou, Kiyohiro Houkin, Isao Date, Hirofumi Hamada
JournalMolecular therapy : the journal of the American Society of Gene Therapy (Mol Ther) Vol. 9 Issue 2 Pg. 189-97 (Feb 2004) ISSN: 1525-0016 [Print] United States
PMID14759803 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Brain-Derived Neurotrophic Factor
Topics
  • Adenoviridae (genetics)
  • Animals
  • Brain-Derived Neurotrophic Factor (genetics, immunology, metabolism, therapeutic use)
  • DNA Fragmentation
  • Disease Models, Animal
  • Genetic Therapy
  • Genetic Vectors (genetics)
  • Humans
  • Infarction, Middle Cerebral Artery (genetics, pathology, therapy)
  • Magnetic Resonance Imaging
  • Mesenchymal Stem Cell Transplantation
  • Mesenchymal Stem Cells (cytology, immunology, metabolism)
  • Phenotype
  • Rats

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: