HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins.

AbstractPURPOSE:
To determine the concentrations of methylglyoxal-derived advanced glycation end-products (AGEs), the hydroimidazolones MG-H1 and -H2, in soluble human lens proteins and compare them with the concentrations of other methylglyoxal-derived AGEs and pentosidine.
METHODS:
Lens protein samples were hydrolyzed enzymatically. AGEs were assayed without derivatization by HPLC with tandem mass spectrometry; the fluorescent AGEs argpyrimidine and pentosidine were assayed by fluorometric detection. MG-H1 and -H2 were resolved and assayed by fluorometric detection after derivatization with 6-aminoquinolyl-N-hydroxysuccimidylcarbamate (AQC).
RESULTS:
The methylglyoxal-derived hydroimidazolones MG-H1 and -H2 were detected and quantified in human lens proteins. AGE concentrations (mean +/- SEM) were: MG-H1 4609 +/- 411 pmol/mg protein, MG-H2 3085 +/- 328 pmol/mg protein, argpyrimidine 205 +/- 19 pmol/mg protein, and pentosidine 0.693 +/- 0.104 pmol/mg protein. The concentration of MG-H1 in human lens protein correlated positively with donor age (correlation coefficient = 0.28, P < 0.05), the concentration of MG-H2 (correlation coefficient = 0.78, P < 0.001) and argpyrimidine (correlation coefficient = 0.42, P < 0.01). The concentrations of AGEs were increased in cataractous lenses in comparison with noncataractous lenses: the increases were MG-H1 85%, MG-H2 122%, argpyrimidine 255%, and pentosidine 183% (P < 0.001). Multiple logistic regression analysis showed a significant link of cataract to donor age (regression coefficient beta = 0.094, P = 0.026) and argpyrimidine (beta = 0.022, P = 0.002).
CONCLUSIONS:
Methylglyoxal hydroimidazolones are quantitatively major AGEs of human lens proteins. These substantial modifications of lens proteins may stimulate further glycation, oxidation, and protein aggregation leading to the formation of cataract.
AuthorsNaila Ahmed, Paul J Thornalley, Jens Dawczynski, Sybille Franke, Juergen Strobel, Günter Stein, George M Haik
JournalInvestigative ophthalmology & visual science (Invest Ophthalmol Vis Sci) Vol. 44 Issue 12 Pg. 5287-92 (Dec 2003) ISSN: 0146-0404 [Print] United States
PMID14638728 (Publication Type: Comparative Study, Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Crystallins
  • Glycation End Products, Advanced
  • Imidazoles
  • imidazolone
  • Pyruvaldehyde
  • Arginine
  • pentosidine
  • Lysine
Topics
  • Aged
  • Arginine (analogs & derivatives)
  • Cataract (metabolism)
  • Chromatography, High Pressure Liquid
  • Crystallins (chemistry)
  • Female
  • Fluorometry
  • Glycation End Products, Advanced (analysis)
  • Humans
  • Hydrolysis
  • Imidazoles (analysis)
  • Lens, Crystalline (chemistry)
  • Lysine (analogs & derivatives)
  • Male
  • Mass Spectrometry
  • Middle Aged
  • Pyruvaldehyde (analysis)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: