HOMEPRODUCTSSERVICESCOMPANYCONTACTFAQResearchDictionaryPharmaMobileSign Up FREE or Login

Cytoskeletal responsiveness to progestins is dependent on progesterone receptor A levels.

Abstract
Changes in the cell cytoskeleton occur in cell transformation and recent data suggest the involvement of ovarian hormones, which are implicated in cancer development and progression. In human breast and endometrial tumors, there is disrupted expression of progesterone receptor (PR) isoforms and predominance of one isoform, usually PRA. PRA predominance is an early event in carcinogenesis, and in cancers is associated with poor clinical features. Overexpression of PRA in vitro causes altered progestin regulation of cell morphology, suggesting that PRA overexpression may provoke deleterious changes in cell functioning. This study aimed to identify pathways of cytoskeleton regulation responsive to progestins and to determine whether these are perturbed when PRA is overexpressed to the levels seen in cancers. Progestin treatment of PR-positive breast cancer cells caused increased cell surface area whereas after induction of a stably integrated PRA construct, cells became rounded and the cell surface was decreased. The effect of PRA induction on cell rounding was reversed by the anti-progestin RU38486. Altered tropomyosin (Tm) isoforms were implicated in these morphological differences, as there was a PRA-mediated alteration in Tm5 isoform levels, and transfection of Tm5a mimicked progestin-mediated cell rounding in PRA-overexpressing cells. Ezrin was redistributed from the membrane to cytoplasmic locations in the presence of progestin, and discrete focal localization was evident in cells with PRA predominance. Progestin effects on the cytoskeleton in PRA-overexpressing cells provide evidence for novel endocrine regulation of aspects of actin microfilament composition, suggesting that changes in the cytoskeleton known to be associated with cancer development and progression may be regulated in part by altered PRA expression which develops early in carcinogenesis.
AuthorsE M McGowan, R P Weinberger, J D Graham, H D Hill, J A I Hughes, G M O'Neill, C L Clarke
JournalJournal of molecular endocrinology (J Mol Endocrinol) Vol. 31 Issue 2 Pg. 241-53 (Oct 2003) ISSN: 0952-5041 [Print] England
PMID14519093 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Actins
  • Ctnnb1 protein, rat
  • Cytoskeletal Proteins
  • Phosphoproteins
  • Progestins
  • Receptors, Progesterone
  • Trans-Activators
  • beta Catenin
  • ezrin
  • progesterone receptor A
Topics
  • Actin Cytoskeleton (metabolism)
  • Actins (metabolism)
  • Animals
  • Cytoskeletal Proteins (metabolism)
  • Female
  • Focal Adhesions (metabolism)
  • Mammary Neoplasms, Animal (metabolism, pathology)
  • Phosphoproteins (metabolism)
  • Progestins (metabolism, pharmacology)
  • Rats
  • Receptors, Progesterone (metabolism)
  • Signal Transduction (drug effects, physiology)
  • Trans-Activators (metabolism)
  • beta Catenin

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research network!


Choose Username:
Email:
Password:
Verify Password: