HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

1-beta-D-arabinofuranosylcytosine-diphosphate-choline is formed by the reversal of cholinephosphotransferase and not via cytidylyltransferase.

Abstract
In an effort to identify the pathway leading to the formation of 1-beta-D-arabinofuranosylcytosine-diphosphate (ara-CDP)-choline from 1-beta-D-arabinofuranosylcytosine (ara-C) treatment of cultured cells, as well as of cells obtained from leukemia patients, we probed the enzymatic steps involved in the CDP-choline pathway for phosphatidylcholine biosynthesis. Ara-C-triphosphate was not a substrate for CTP:phosphocholine cytidylyltransferase activity under the conditions employed, whereas CTP and dCTP were utilized to form CDP-choline and dCDP-choline, respectively. When presented together, ara-C-triphosphate and CTP inhibited the enzymatic conversion of CTP to CDP-choline in the presence of phosphocholine, with a Ki of 6 mM. Since CTP:phosphocholine cytidylyltransferase did not appear to be responsible for the increased levels of ara-CDP-choline, we next studied the other enzyme in the pathway for phosphatidylcholine synthesis that could form ara-CDP-choline, CDP-choline:1,2-diacylglycerol cholinephosphotransferase. CDP-choline:1,2-diacylglycerol cholinephosphotransferase activity present in microsomes isolated from L5178Y murine leukemia cells exhibited a reversal of its normal catalytic activity, using CMP and 1-beta-D-arabinofuranosylcytosine-monophosphate (ara-CMP) along with phosphatidylcholine to produce either CDP-choline or ara-CDP-choline, plus diradylglycerol. The Vmax and Km values for CMP were 0.78 +/- 0.04 nmol/min/mg and 340 +/- 20 microM, respectively, whereas the Vmax and Km for ara-CMP were 0.22 +/- 0.06 nmol/min/mg and 1410 +/- 540 microM, respectively. A Ki value of 3 mM was obtained for ara-CMP under the cell-free assay conditions used. These results indicate that ara-CDP-choline most likely arises from a reversal of the CDP-choline:1,2-diacylglycerol cholinephosphotransferase utilizing ara-CMP, rather than from the catalysis of ara-C-triphosphate plus phosphocholine to ara-CDP-choline by CTP:phosphocholine cytidylyltransferase. It is speculated that this mechanism may explain, in part, the rapid cellular lysis observed with high dose ara-C therapy.
AuthorsG L Kucera, R L Capizzi
JournalCancer research (Cancer Res) Vol. 52 Issue 14 Pg. 3886-91 (Jul 15 1992) ISSN: 0008-5472 [Print] United States
PMID1377599 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Cytarabine
  • Vidarabine Phosphate
  • ara-ATP
  • Cytidine Diphosphate Choline
  • 1 beta-D-arabinofuranosylcytosine diphosphate choline
  • Nucleotidyltransferases
  • Choline-Phosphate Cytidylyltransferase
  • Diacylglycerol Cholinephosphotransferase
Topics
  • Animals
  • Choline-Phosphate Cytidylyltransferase
  • Cytarabine (analogs & derivatives, metabolism)
  • Cytidine Diphosphate Choline (analogs & derivatives, metabolism)
  • Diacylglycerol Cholinephosphotransferase (metabolism)
  • Leukemia L5178 (metabolism)
  • Nucleotidyltransferases (metabolism)
  • Vidarabine Phosphate (analogs & derivatives, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: