HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Antitumor activity and cross-resistance of carmethizole hydrochloride in preclinical models in mice.

Abstract
Carmethizole hydrochloride [1-methyl-2-methylthio-4,5-bis(hydroxymethyl)imidazole-4', 5'-bis(N-methylcarbamate)hydrochloride, NSC 602,668; hereafter called carmethizole] is a new antitumor drug that has shown relatively broad activity in initial evaluations against several murine tumors and human tumor xenografts in vivo. The present studies were designed to address questions about carmethizole's activity against established disease, its activity on different treatment schedules, and the extent of its cross-resistance with established drugs. Human MX-1 mammary carcinoma, human NCI-H82 small-cell lung carcinoma, and human LOX amelanotic melanoma xenografts in athymic mice were used to determine the drug's activity against established disease; the NCI-H82 lung-tumor xenograft in athymic mice was used to explore its schedule dependence; and a series of drug-resistant murine leukemias provided an in vivo cross-resistance profile. When injected i.p., carmethizole exhibited antitumor activity against advanced-stage s.c. MX-1 mammary, s.c. NCI-H82 lung, and i.p. LOX melanoma xenografts and was as effective against established disease (MX-1 and LOX) as it was against early-stage disease (no data are available for early-stage NCI-H82). The therapeutic effect of carmethizole was not route-dependent, as was evidenced by the similar delays observed in tumor growth following i.p. and i.v. administration. The use of a split-dose schedule on a single day instead of one bolus injection yielded an increase in the total dose delivered, resulting in an increased delay in tumor growth. Murine leukemias resistant to vincristine (VCR), amsacrine (AMSA), or methotrexate (MTX) were not cross-resistant to carmethizole. However, murine leukemias resistant to doxorubicin (ADR), melphalan (L-PAM), cisplatin (DDPt), 1-beta-D-ara-binofuranosylcytosine (ara-C), and 5-fluorouracil (5-FU) were cross-resistant to carmethizole, suggesting that patients who have previously been treated with any of these agents might be less likely to respond to carmethizole than those who have had no opportunity to develop resistance to any of these compounds. We anticipate that the information derived from these studies may be useful in the design of clinical trials of carmethizole and may stimulate additional basic research on the mechanism of action of this new agent.
AuthorsW R Waud, J Plowman, S D Harrison Jr, D J Dykes, W K Anderson, D P Griswold Jr
JournalCancer chemotherapy and pharmacology (Cancer Chemother Pharmacol) Vol. 30 Issue 4 Pg. 261-6 ( 1992) ISSN: 0344-5704 [Print] Germany
PMID1322803 (Publication Type: Comparative Study, Journal Article, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Antineoplastic Agents
  • Imidazoles
  • carmethizole
Topics
  • Animals
  • Antineoplastic Agents (pharmacology)
  • Carcinoma, Small Cell (drug therapy, pathology)
  • Drug Evaluation, Preclinical
  • Drug Resistance
  • Humans
  • Imidazoles (pharmacology)
  • Leukemia L1210 (drug therapy, pathology)
  • Leukemia P388 (drug therapy, pathology)
  • Lung Neoplasms (drug therapy, pathology)
  • Mammary Neoplasms, Experimental (drug therapy, pathology)
  • Melanoma, Experimental (drug therapy, pathology)
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred DBA
  • Mice, Nude
  • Neoplasm Transplantation
  • Neoplasms, Experimental (drug therapy, pathology)
  • Transplantation, Heterologous

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: