HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Correlation of tumor oxygen dynamics with radiation response of the dunning prostate R3327-HI tumor.

Abstract
Our previous studies have shown that oxygen inhalation significantly reduces tumor hypoxia in the moderately well-differentiated HI subline of the Dunning prostate R3327 rat carcinoma. To test our hypothesis that modifying hypoxia could improve the radiosensitivity of these tumors, we performed experimental radiotherapy to compare the tumor response to ionizing radiation alone or in combination with oxygen inhalation. Tumor pO(2) measurements were performed on size-selected tumors several hours before radiotherapy using (19)F nuclear magnetic resonance echo planar imaging relaxometry (FREDOM) of the reporter molecule hexafluorobenzene. In common with our previous findings, the larger tumors (>3.5 cm(3)) exhibited greater hypoxia than the smaller tumors (<2 cm(3); P < 0.001), and oxygen inhalation reduced the hypoxic fraction (<10 Torr): In the larger tumors, hypoxic fraction dropped significantly from a mean baseline value of 80% to 17% (P < 0.001). The effect of oxygen administered 30 min before and during irradiation on tumor response to a single 30-Gy dose of photons was evaluated by growth delay. For the smaller tumors, no difference in growth delay was found when treatment was given with or without oxygen breathing. By contrast, breathing oxygen before and during irradiation significantly enhanced the growth delay in the larger tumors (additional 51 days). The differential behavior may be attributed to the low baseline hypoxic fraction (<10 Torr) in small tumors (20%) as a target for oxygen inhalation. There was a strong correlation between the estimated initial pO(2) value and the radiation-induced tumor growth delay (R > 0.8). Our histological studies showed a good match between the perfused vessels marked by Hoechst 33342 dye and the total vessels immunostained by anti-CD31 and indicated extensive perfusion in this tumor line. In summary, the present results suggest that the ability to detect modulation of tumor pO(2), in particular, the residual hypoxic fraction, with respect to an intervention, could have prognostic value for predicting the efficacy of radiotherapy.
AuthorsDawen Zhao, Anca Constantinescu, Cheng-Hui Chang, Eric W Hahn, Ralph P Mason
JournalRadiation research (Radiat Res) Vol. 159 Issue 5 Pg. 621-31 (May 2003) ISSN: 0033-7587 [Print] United States
PMID12710873 (Publication Type: Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Oxygen
Topics
  • Animals
  • Male
  • Oximetry
  • Oxygen (metabolism)
  • Prostatic Neoplasms (metabolism, pathology, radiotherapy)
  • Radiation Tolerance
  • Rats

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: