HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

N-succinimidyl 3-[(131)I]iodo-4-phosphonomethylbenzoate ([(131)I]SIPMB), a negatively charged substituent-bearing acylation agent for the radioiodination of peptides and mAbs.

Abstract
An important criterion in design of acylation agents for the radioiodination of internalizing monoclonal antibodies (mAbs) is to maximize the retention of radioiodine in the tumor following mAb intracellular processing. We have previously shown that labeling methods that generate positively charged catabolites have enhanced tumor retention. Herein we have extended this strategy to investigate the potential utility of labeling internalizing mAbs with an acylation agent that yielded labeled catabolites that would be negatively charged at lysosomal pH. The negatively charged acylation agent, N-succinimidyl 3-[(131)I]iodo-4-phosphonomethylbenzoate ([(131)I]SIPMB), was prepared from its tin precursor, N-succinimidyl 4-di-tert-butylphosphonomethyl-3-trimethylstannylbenzoate (tBu-SPMTB), in 40% radiochemical yield. The free acid, 3-[(131)I]iodo-4-phosphonomethylbenzoic acid ([(131)I]IPMBA), was also prepared from the corresponding precursor, 4-di-tert-butylphosphonomethyl-3-trimethylstannylbenzoic acid (tBu-PMTBA), in 80% radiochemical yield. The rapidly internalizing mAb L8A4 was conjugated to [(131)I]SIPMB in 25-40% yield with preservation of its immunoreactivity. Internalization and processing in the U87DeltaEGFR glioma cell line was studied in a paired label format with L8A4 labeled with (125)I using the Iodogen method. Retention of initially bound radioactivity in these cells at 24 h from [(131)I]SIPMB-labeled mAb was approximately 6-fold higher than that for directly labeled mAb. Catabolite analysis demonstrated that this difference reflected an order of magnitude higher retention of low molecular weight species in these cells. The [(131)I]SIPMB-L8A4 conjugate was intact over the first 2 h; thereafter, lysine-[(131)I]SIPMB was the predominant catabolite. In contrast, L8A4 labeled using Iodogen rapidly gave rise to mono-[(125)I]iodotyrosine within 2 h, which then cleared rapidly from the cells. These results suggest that SIPMB could be a potent candidate for labeling internalizing mAbs and warrant further study.
AuthorsSriram Shankar, Ganesan Vaidyanathan, Donna Affleck, Phillip C Welsh, Michael R Zalutsky
JournalBioconjugate chemistry (Bioconjug Chem) 2003 Mar-Apr Vol. 14 Issue 2 Pg. 331-41 ISSN: 1043-1802 [Print] United States
PMID12643743 (Publication Type: Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Antibodies, Monoclonal
  • Benzoates
  • Indicators and Reagents
  • Iodine Radioisotopes
  • N-succinimidyl 3-((131)I)iodo-4-phosphonomethylbenzoate
  • Peptides
  • Succinimides
Topics
  • Acylation
  • Antibodies, Monoclonal (chemistry)
  • Benzoates (chemistry)
  • Chromatography, High Pressure Liquid
  • Indicators and Reagents
  • Iodine Radioisotopes (chemistry)
  • Isotope Labeling (methods)
  • Peptides (chemistry)
  • Succinimides (chemistry)
  • Tumor Cells, Cultured

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: