HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Deoxygenation of polyhydroxybenzenes: an alternative strategy for the benzene-free synthesis of aromatic chemicals.

Abstract
New synthetic connections have been established between glucose and aromatic chemicals such as pyrogallol, hydroquinone, and resorcinol. The centerpiece of this approach is the removal of one oxygen atom from 1,2,3,4-tetrahydroxybenzene, hydroxyhydroquinone, and phloroglucinol methyl ether to form pyrogallol, hydroquinone, and resorcinol, respectively. Deoxygenations are accomplished by Rh-catalyzed hydrogenation of the starting polyhydroxybenzenes followed by acid-catalyzed dehydration of putative dihydro intermediates. Pyrogallol synthesis consists of converting glucose into myo-inositol, oxidation to myo-2-inosose, dehydration to 1,2,3,4-tetrahydroxybenzene, and deoxygenation to form pyrogallol. Synthesis of pyrogallol via myo-2-inosose requires 4 enzyme-catalyzed and 2 chemical steps. For comparison, synthesis of pyrogallol from glucose via gallic acid intermediacy and the shikimate pathway requires at least 20 enzyme-catalyzed steps. A new benzene-free synthesis of hydroquinone employs conversion of glucose into 2-deoxy-scyllo-inosose, dehydration of this inosose to hydroxyhydroquinone, and subsequent deoxygenation to form hydroquinone. Synthesis of hydroquinone via 2-deoxy-scyllo-inosose requires 2 enzyme-catalyzed and 2 chemical steps. By contrast, synthesis of hydroquinone using the shikimate pathway and intermediacy of quinic acid requires 18 enzyme-catalyzed steps and 1 chemical step. Methylation of triacetic acid lactone, cyclization, and regioselective deoxygenation of phloroglucinol methyl ether affords resorcinol. Given the ability to synthesize triacetic acid lactone from glucose, this constitutes the first benzene-free route for the synthesis of resorcinol.
AuthorsChad A Hansen, J W Frost
JournalJournal of the American Chemical Society (J Am Chem Soc) Vol. 124 Issue 21 Pg. 5926-7 (May 29 2002) ISSN: 0002-7863 [Print] United States
PMID12022810 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: