HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Influence of chelation and oxidation state on vanadium bioavailability, and their effects on tissue concentrations of zinc, copper, and iron.

Abstract
Today, vanadium compounds are frequently included in nutritional supplements and are also being developed for therapeutic use in diabetes mellitus. Previously, tissue uptake of vanadium from bis(maltolato)oxovanadium(IV) (BMOV) was shown to be increased compared to its uptake from vanadyl sulfate (VS). Our primary objective was to test the hypothesis that complexation increases vanadium uptake and that this effect is independent of oxidation state. A secondary objective was to compare the effects of vanadium complexation and oxidation state on tissue iron, copper, and zinc. Wistar rats were fed either ammonium metavanadate (AMV), VS, or BMOV (1.2 mM each in the drinking water). Tissue uptake of V following 12 wk of BMOV or AMV was higher than that from VS (p < 0.05). BMOV led to decreased tissue Zn and increased bone Fe content. The same three compounds were compared in a cellular model of absorption (Caco-2 cells). Vanadium uptake from VS was higher than that from BMOV or AMV at 10 min, but from BMOV (250 microM only, 60 min), uptake was far greater than from AMV or VS. These results show that neither complexation nor oxidation state alone are adequate predictors of relative absorption, tissue accumulation, or trace element interactions.
AuthorsKatherine H Thompson, Yoko Tsukada, Zhaoming Xu, Mary Battell, John H McNeill, Chris Orvig
JournalBiological trace element research (Biol Trace Elem Res) Vol. 86 Issue 1 Pg. 31-44 (Apr 2002) ISSN: 0163-4984 [Print] United States
PMID12002658 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Pyrones
  • Vanadium Compounds
  • Vanadium
  • bis(maltolato)oxovanadium(IV)
  • Vanadates
  • vanadyl sulfate
  • Copper
  • Iron
  • ammonium metavanadate
  • Zinc
Topics
  • Animals
  • Biological Availability
  • Bone and Bones (chemistry)
  • Caco-2 Cells
  • Copper (analysis)
  • Humans
  • Iron (analysis)
  • Kidney (chemistry)
  • Male
  • Oxidation-Reduction
  • Pyrones (pharmacokinetics)
  • Rats
  • Rats, Wistar
  • Vanadates (pharmacokinetics)
  • Vanadium (pharmacokinetics)
  • Vanadium Compounds (pharmacokinetics)
  • Zinc (analysis)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: