HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Intracellular pH response to anoxia in acutely dissociated adult rat hippocampal CA1 neurons.

Abstract
The effects of anoxia on intracellular pH (pH(i)) were examined in acutely isolated adult rat hippocampal CA1 neurons loaded with the H(+)-sensitive fluorophore, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein. During perfusion with HCO/CO(2)- or HEPES-buffered media (pH 7.35) at 37 degrees C, 5- or 10-min anoxic insults were typified by an intracellular acidification on the induction of anoxia, a subsequent rise in pH(i) in the continued absence of O(2), and a further internal alkalinization on the return to normoxia. The steady-state pH(i) changes were not consequent on changes in [Ca(2+)](i) and, examined in the presence of HCO, were not significantly affected by (DIDS). In the absence of HCO, the magnitude of the postanoxic alkalinization was attenuated when external Na(+) was reduced by substitution with N-methyl-D-glucamine (NMDG(+)), but not Li(+), suggesting that increased Na(+)/H(+) exchange activity contributes to this phase of the pH(i) response. In contrast, 100-500 microM Zn(2+), a known blocker of H(+)-conductive pathways, reduced the magnitudes of the internal alkalinizations that occurred both during and following anoxia. The effects of NMDG(+)-substituted medium and Zn(2+) to reduce the increase in pH(i) that occurred after anoxia were additive. Consistent with the steady-state pH(i) changes, rates of pH(i) recovery from internal acid loads imposed immediately after anoxia were increased, and the application of Zn(2+) and/or perfusion with NMDG(+)-substituted medium slowed pH(i) recovery. Reducing extracellular pH from 7.35 to 6.60, or reducing ambient temperature from 37 degrees C to room temperature, also attenuated the increases in steady-state pH(i) observed during and after anoxia and reduced rates of pH(i) recovery from acid loads imposed in the immediate postanoxic period. Finally, inhibition of the cAMP/protein kinase A second-messenger system reduced the magnitude of the rise in pH(i) after anoxia in a manner that was dependent on external Na(+); conversely, activation of the system with isoproterenol increased the postanoxic alkalinization, an effect that was attenuated by pretreatment with propranolol, Rp-cAMPS, or when NMDG(+) (but not Li(+)) was employed as an external Na(+) substitute. The results suggest that a Zn(2+)-sensitive acid efflux mechanism, possibly a H(+)-conductive pathway activated by membrane depolarization, contributes to the internal alkalinization observed during anoxia in adult rat CA1 neurons. The rise in pH(i) after anoxia reflects acid extrusion via the H(+)-conductive pathway and also Na(+)/H(+) exchange, activation of the latter being mediated, at least in part, through a cAMP-dependent signaling pathway.
AuthorsClaire Sheldon, John Church
JournalJournal of neurophysiology (J Neurophysiol) Vol. 87 Issue 5 Pg. 2209-24 (May 2002) ISSN: 0022-3077 [Print] United States
PMID11976362 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Acids
  • Quaternary Ammonium Compounds
  • Cyclic AMP-Dependent Protein Kinases
  • Calcium
Topics
  • Acid-Base Equilibrium (physiology)
  • Acids (metabolism)
  • Animals
  • Calcium (metabolism)
  • Cyclic AMP-Dependent Protein Kinases (metabolism)
  • Hippocampus (cytology)
  • Homeostasis (physiology)
  • Hydrogen-Ion Concentration
  • Hypoxia (metabolism)
  • In Vitro Techniques
  • Male
  • Neurons (metabolism)
  • Quaternary Ammonium Compounds (metabolism)
  • Rats
  • Rats, Wistar
  • Temperature

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: