HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene.

Abstract
To examine the synergistic effects of alpha-toxin and perfringolysin O in clostridial myonecrosis, homologous recombination was used to construct an alpha-toxin deficient derivative of a perfringolysin O mutant of Clostridium perfringens. The subsequent strain was complemented with separate plasmids that carried the alpha-toxin structural gene (plc), the perfringolysin O gene (pfoA), or both toxin genes, and the resultant isogenic strains were examined in a mouse myonecrosis model. Synergistic effects were clearly observed in these experiments. Infection with the control strain, which did not produce either toxin, resulted in very minimal gross pathological changes, whereas the isogenic strain that was reconstituted for both toxins produced a pathology that was clearly more severe than when alpha-toxin alone was reconstituted. These changes were most apparent in the rapid spread of the disease, the gross pathology of the footpad and in the rate at which the mice had to be euthanatized for ethical reasons. Elimination of both alpha-toxin and perfringolysin O production removed most of the histopathological features typical of clostridial myonecrosis. These effects were restored when the mutant was complemented with the alpha-toxin structural gene, but reconstituting only perfringolysin O activity produced vastly different results, with regions of coagulative necrosis, apparently enhanced by vascular disruption, being observed. Reconstitution of both alpha-toxin and perfringolysin O activity produced histopathology most similar to that observed with the alpha-toxin reconstituted strain. The spreading of myonecrosis was very rapid in these tissues, and coagulative necrosis appeared to be restricted to the lumen of the blood vessels. The results of these virulence experiments clearly support the hypothesis that alpha-toxin and perfringolysin O have a synergistic effect in the pathology of gas gangrene.
AuthorsM M Awad, D M Ellemor, R L Boyd, J J Emmins, J I Rood
JournalInfection and immunity (Infect Immun) Vol. 69 Issue 12 Pg. 7904-10 (Dec 2001) ISSN: 0019-9567 [Print] United States
PMID11705975 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Bacterial Toxins
  • Calcium-Binding Proteins
  • Hemolysin Proteins
  • Clostridium perfringens theta-toxin
  • Type C Phospholipases
  • alpha toxin, Clostridium perfringens
Topics
  • Animals
  • Bacterial Toxins (genetics, toxicity)
  • Calcium-Binding Proteins
  • Clostridium perfringens (pathogenicity)
  • Drug Synergism
  • Gas Gangrene (etiology, pathology)
  • Hemolysin Proteins
  • Hindlimb
  • Mice
  • Mice, Inbred BALB C
  • Muscle, Skeletal (pathology)
  • Mutation
  • Necrosis
  • Type C Phospholipases (genetics, toxicity)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: